Course Syllabus
General Biology I (BIO-101)

Semester and year:
Course Number:
Meeting Times and Locations:

Instructor:
Office Location:
Phone:
Office Hours:
Email Address:

Course Title: General Biology I (BIO -101)

Prerequisites: None

Course Credits/Hours: 4 credits / 3 hr lectures, 3 hr labs

General Education Course: Yes

Course Description: BIO-101 General Biology I is the first course in a two semester sequence in general biology. It is designed to explain the fundamental principles of biology and to promote an awareness of their significance to society. Lecture topics include: introduction to biology, review of basic chemistry, cell biology, genetics, and a survey of kingdoms Monera, Protista, and Fungi. Laboratory exercises develop proficiency in the use of laboratory equipment and guide students in investigations of cell biology, genetics, and microbiology.

Supplementary Materials:

Student Learning Objectives and Student Assessment—“The student will be able to”:

1. Describe the nature of science as it specifically applies to the discipline of biology. Students will be evaluated by lecture and laboratory examinations.

2. Explain the process of evolution and research the impact that Charles Darwin and other evolutionists had on the explanation of the process. Students will be evaluated by lecture examinations.

3. Investigate the knowledge of the chemical basis of living organisms and how chemistry defines a large part of the study of biology. Students will be evaluated by lecture examinations.
4. Examine the characteristics of water, the medium on which all life on earth depends. Students will be evaluated by lecture examinations.

5. Analyze the nature of organic biocompounds (carbohydrates, proteins etc…) and their importance as building blocks of living systems. Students will be evaluated by lecture examinations.

6. Identify the chemical and physical structure and diversity of living organisms and research how they interact with the environment. Students will be evaluated by lecture examinations.

7. Identify the characteristics of living organisms. Students will be evaluated by lecture examinations and student projects.

8. Explain the composition and function of biological membranes. Students will be evaluated by lecture and laboratory examinations.

9. Define passive transport – diffusion, osmosis, and facilitated diffusion and relate the changing conditions inside and outside of cells to these definitions. Students will be evaluated by lecture and laboratory examinations.

10. Define active transport and relate the changing conditions inside and outside of cells to the need for AT. Students will be evaluated by lecture examinations.

11. Examine the nature of free energy and the application of free energy to living systems, mainly in the metabolism of cells. Students will be evaluated by lecture examinations.

12. Explain and describe the nature of enzymes and their critical importance to living systems. Students will be evaluated by lecture and laboratory examinations.

13. Assess the cell’s metabolic pathways and their energetic products in both phototrophic and chemotrophic organisms. Students will be evaluated by lecture examinations.

14. Explain the need for cellular reproduction and the different types carried out by selected organisms. Students will be evaluated by lecture and laboratory examinations.

15. Examine the nature of informational molecules (DNA and RNA) and the expression of this information through the process of gene expression. Students will be evaluated by lecture examinations.

16. Compare Mendelian and non-mendelian inheritance and describe the way living organisms pass characteristics from one generation to the next. Students will be evaluated by lecture examinations and student papers.

17. Investigate the importance of the light microscope to the practice of biology. Students will be evaluated in the laboratory regarding the proper use of the microscope during a laboratory practical. Students’ laboratory participation may also be evaluated in the form of a student laboratory project.

18. Model proper use of the microscope to examine the difference between selected prokaryotic and eukaryotic organisms. Students will be evaluated by laboratory observation and laboratory exams.

19. Make a wet-mount of selected biological material and properly use the microscope to view the material. Students will be evaluated by laboratory observation and laboratory exams.

20. Show how to properly sample the local environment for the presence of microbial organisms by making an environmental plate. Students will be evaluated in the laboratory by demonstration of their technique and by the development of their plates.

21. Discover the importance of recording laboratory data in the form of a notebook or a laboratory report. Student notebooks or laboratory reports will be evaluated by their instructors as part of their final grade.

22. Construct two different types of graphs (histogram and Cartesian) and be able to survey each graph for general trends that appear upon the analysis of biological data. Students will be evaluated by lab examinations and or lab reports.

23. Work as a member of a laboratory group and model how to collect data or information as part of this group. Students will be evaluated during the laboratory period and the participation will be recorded as a component of
The evaluation may be in the form of a laboratory presentation in addition to the class participation.

The above student learning objectives will be generally assessed or evaluated by instructors using a variety of assessment instruments including lecture exams, laboratory exams, quizzes, laboratory reports, written reports, presentations, projects, etc. The decisions concerning the type or types and number of instruments that are used in a specific section of the course will be left to the instructor of that section. This information, when given by the instructor should be recorded by the student on page 7 of this document.

Course Content

Lecture Topics:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Text: Raven and Johnson Biology (RJ) page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Science of Biology</td>
<td>(RJ): p.1</td>
</tr>
<tr>
<td></td>
<td>The Science of life.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Nature of Science.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>An Example of Scientific Inquiry: Darwin and Evolution.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unifying Themes in Biology</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>The Nature of Molecules</td>
<td>(RJ):p.17</td>
</tr>
<tr>
<td></td>
<td>The Nature of Atoms.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elements found in Living Systems.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Nature of Chemical Bonds.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Properties of Water.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acids and Bases</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>The Chemical Building Blocks of Life</td>
<td>(RJ): p.33</td>
</tr>
<tr>
<td></td>
<td>Carbon: The Frame work of Biological Molecules.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbohydrates: Energy Storage and Structural Molecules.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nucleic Acids: Information Molecules.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proteins: Molecules with Diverse Structures and Functions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lipids: Hydrophobic Molecules</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cell Structure</td>
<td>(RJ): p.59</td>
</tr>
<tr>
<td></td>
<td>Cell Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prokaryotic Cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eukaryotic Cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Endomembrane System</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mitochondria and Chloroplasts: Cellular Generators</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Cytoskeleton</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extracellular Structures and Cell Movement</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Membranes</td>
<td>(RJ): p.88</td>
</tr>
<tr>
<td></td>
<td>The Structure of Membranes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phospholipids: The Membrane’s Foundation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proteins: Multifunctional Components.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Passive Transport Across Membranes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Active Transport Across Membranes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bulk Transport by Endocytosis and Exocytosis</td>
<td></td>
</tr>
</tbody>
</table>
6 Energy and Metabolism
 The Flow of Energy in Living Systems
 The Laws of Thermodynamics and Free Energy
 ATP: The Energy Currency in Cells
 Enzymes Biological Catalysts.
 Metabolism: The Chemical Description of Cell Function
7 How Cells Harvest Energy
 Overview of Respiration.
 Glycolysis: Splitting of Glucose
 The Oxidation of Pyruvate to Produce Acetyl CoA
 The Krebs Cycle.
 The Electron Transport Chain and Chemiosmosis
 Energy Yield of Aerobic Respiration
 Regulation of Aerobic Respiration
 Oxidation Without O₂
 Catabolism of Proteins and Fats
8 Photosynthesis
 Overview of Photosynthesis
 The Discovery of Photosynthetic Processes
 Pigments.
 Photosystem Organization
 The Light Dependent reactions
 Carbon Fixation: The Calvin Cycle
 Photorespiration
10 How Cells Divide
 Bacterial Cell Division.
 Eukaryotic Chromosomes.
 Overview of the Eukaryotic Cell Cycle.
 Interphase: Preparation for Mitosis.
 Mitosis Chromosome Segregation.
 Cytokinesis: The Division of Cytoplasmic Contents.
 Control of the Cell Cycle.
11 Sexual Reproduction and Meiosis
 Sexual Reproduction Requires Meiosis.
 Features of Meiosis
 The Process of Meiosis.
 Summing Up: Meiosis Versus Mitosis.
12 Patterns of Inheritance
 The Mystery of Heredity.
 Monohybrid Crosses: The Principle of Segregation
 Dihybrid Crosses: The Principle of Independent Assortment
 Probability: Predicting the Results of Crosses.
 The Test Cross: Revealing Unknown Genotypes.
 Extensions to Mendel
14 DNA: The Genetic Material
 The Nature of the Genetic Material.
 DNA Structure
 Basic Characteristics of DNA Replication.
 Prokaryotic Replication.
 Eukaryotic Replication.
 DNA Repair
15 Genes and How They Work
 The Nature of Genes.
 The Genetic Code.
 Prokaryotic and Eukaryotic Transcription.
 Eukaryotic pre-mRNA Splicing.
 The Structure of tRNA and Ribosomes.
 The Process of Translation.
 Summarizing Gene Expression
 Mutation: Altered Genes
 (RJ): p. 277

17 Biotechnology (Optional)
 (RJ): p. 327

23 Systematics and the Phylogenetic Revolution
 Systematics
 Cladistics.
 Systematics and Classification.
 (RJ): p. 456

26 The Tree of Life
 Origins of Life
 Classification of Organisms
 Grouping Organisms
 Making sense of the Protists
 (RJ): p. 507

27 Viruses
 The Nature of Viruses.
 Bacteriophages: Bacterial Viruses.
 Human Immunodeficiency Virus (HIV).
 Other Viral Diseases
 Prions and Viroids: Subviral Particles
 (RJ): p. 528

28 Prokaryotes
 The First Cells.
 Prokaryotic Diversity.
 Prokaryotic Cell Structure.
 Prokaryotic Metabolism.
 Human Bacterial Disease.
 Beneficial Prokaryotes
 (RJ): p. 545

29 Protists
 Eukaryotic Origins and Endosymbiosis
 Defining Protists.
 The General Biology and Ecology of the Protists.
 Protist Taxa
 Protozoan Parasites and Diseases
 (RJ): p. 567

31 Fungi
 Defining Fungi.
 Fungal Taxa
 The General Biology and Ecology of the Fungi.
 Fungal Parasites and Pathogens
 (RJ): p. 614
Course Content

Laboratory Topics:

<table>
<thead>
<tr>
<th>Week Number</th>
<th>Title</th>
<th>Text: Exercises in Laboratory Biology / (ELB) Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Scientific Investigation (Exercise 1)</td>
<td>(ELB): p.1</td>
</tr>
<tr>
<td></td>
<td>Questions</td>
<td>Within Exercise (WE)</td>
</tr>
<tr>
<td>2.</td>
<td>Scientific Measurement (2)</td>
<td>(ELB): p.11</td>
</tr>
<tr>
<td></td>
<td>Read: Unit Expression Factors</td>
<td>Appendix A, p. 193</td>
</tr>
<tr>
<td></td>
<td>Read: Rules for Identifying Significant Figures</td>
<td>Appendix B, p. 195</td>
</tr>
<tr>
<td></td>
<td>Questions</td>
<td>WE and p. 15</td>
</tr>
<tr>
<td>3.</td>
<td>Qualitative Tests for Biological Molecules (3)</td>
<td>(ELB): p.19</td>
</tr>
<tr>
<td></td>
<td>Carbohydrates, Proteins, Lipids, and Nucleic Acids</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Questions</td>
<td>WE</td>
</tr>
<tr>
<td>4.</td>
<td>Qualitative Analysis of Two Unknown substances (4)</td>
<td>(ELB): p. 33</td>
</tr>
<tr>
<td></td>
<td>Questions</td>
<td>p. 34</td>
</tr>
<tr>
<td>5.</td>
<td>Light Microscopy (5)</td>
<td>(ELB): p. 37</td>
</tr>
<tr>
<td></td>
<td>Simple Microscopes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compound Light Microscopes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Using A Compound Microscope</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dissecting Microscopes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Questions</td>
<td>WE</td>
</tr>
<tr>
<td>6.</td>
<td>Cells (6)</td>
<td>(ELB): p. 51</td>
</tr>
<tr>
<td></td>
<td>Prokaryotic Cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eukaryotic Cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protists, Plant Cells, and Animal Cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Questions</td>
<td>WE</td>
</tr>
<tr>
<td>7.</td>
<td>Membranes</td>
<td>(ELB)</td>
</tr>
<tr>
<td></td>
<td>Read: Biological Mixtures</td>
<td>Appendix C, p. 197</td>
</tr>
<tr>
<td></td>
<td>Diffusion through a Simulated Semi-permeable Membrane (7)</td>
<td>p. 61</td>
</tr>
<tr>
<td></td>
<td>Tonicity of Red Blood Cells (8)</td>
<td>p. 67</td>
</tr>
<tr>
<td></td>
<td>Plasmolysis in Plant Cells (9)</td>
<td>p. 71</td>
</tr>
<tr>
<td></td>
<td>The Effects of Organic Substances on Cell Membranes (10)</td>
<td>p. 73</td>
</tr>
<tr>
<td></td>
<td>Questions</td>
<td>pp. 65, 69, 70, 72, and 76</td>
</tr>
<tr>
<td>8.</td>
<td>Enzymes (12)</td>
<td>(ELB): p. 83</td>
</tr>
<tr>
<td></td>
<td>The Effects of Temperature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Effects of pH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Questions</td>
<td>WE</td>
</tr>
</tbody>
</table>
8. **Energy Generating Pathways**
 (ELB)
 Mitochondrion and Chloroplast Structure (11) p. 79
 Oxygen Uptake during Aerobic Respiration (13) p. 95
 Fermentation (14) p. 103

 Questions pp. 80, 98, 101, 105, and 106

9. **Photosynthesis**
 (ELB)
 Separation of Plant Pigments (15) p. 107
 A Qualitative Absorption Spectrum of Chlorophyll (16) p. 111
 Carbon Dioxide Incorporation during Photosynthesis (17) p. 115

 Questions pp. 108, 112, and 117

10. **Mitotic Cell Division in Plants and Animals**
 (ELB): p. 119
 The Onion Root Tip
 Plant Cell Division
 Animal Cell Division

 Questions p. 123

11. **Meiotic Cell Division in a Flowering Plant**
 (ELB): p. 125
 The Flower
 Meiotic Cell Division

 Questions p. 129

12. **Viruses and Bacteria**
 (ELB)
 Viruses (20) p. 131
 Oil Immersion Microscopy (22) p. 141
 Bacterial Morphology (23) p. 145
 The Gram Stain (24) p. 149

 Questions pp. 133, 142, 146, and 154

13. **The Algae**
 (ELB): p. 155
 Introduction to the Algae
 Euglenophyta, Dinophyta, Rhodophyta, Bacillariophyta, Chlorophyta, and Phaeophyta

 Questions WE

14. **The Protozoa**
 (ELB): p. 169
 Introduction to the Protozoa
 Rhizopoda, Granuloreticulosa (Forams)
 Actinopoda, Kinetoplastida, Apicomplexa, Ciliophora, Myxomycota, Zoomastigota, and Archeoprotista

 Questions WE

15. **The Fungi**
 (ELB): p. 183
 Introduction to the Fungi
 Zygomycota, Ascomycota, Basidomycota, and Deuteromycota
 The Lichens

 Questions WE
Course Evaluation:

<table>
<thead>
<tr>
<th>Evaluation Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture Examinations</td>
<td>_______%</td>
</tr>
<tr>
<td>Laboratory Component</td>
<td>_______%</td>
</tr>
<tr>
<td>Student Project/Report</td>
<td>_______%</td>
</tr>
<tr>
<td>Class Participation</td>
<td>_______%</td>
</tr>
<tr>
<td>Other</td>
<td>_______%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Addenda:

Lecture Attendance: As per instructor

Lab Attendance: As per instructor

Policy Concerning Late Assignments: As per instructor

Policy Concerning Make-Up Testing: As per instructor

Smoking Policy: As of January 1, 1992, Bergen Community College facilities are smoke free. Smoking is not allowed in any building on campus.

Eating and Drinking: Eating and drinking in classrooms, lecture halls, laboratories, or passageways is forbidden. Eating and drinking are permitted in the cafeteria and vending areas only.

Faculty Absence: If a class finds the instructor is absent, the class representative should report to the Office of the Divisional Dean (A325) or the Evening Office (L113) after ten minutes of the period has elapsed. The class should remain until the representative returns with instructions.

Safety Information: As per instructor and assigned exercise

All BCC students enrolled in credit courses are entitled to a WebAdvisor account. With WebAdvisor, you may register online, pay your bill, check your schedule, room assignments, GPA, and find out what courses you need to take, etc. To find out more about WebAdvisor or to sign up online, visit http://go.bergen.edu! While there, please make sure you give us your preferred email address. You'll find directions how to do this at http://go.bergen.edu/email.