Semester and year:
Course Number and Section:
Meeting Times and Locations:

Instructor:
Office Location:
Phone:
Office Hours:
Email Address:

COURSE DESCRIPTION:

BIO-203 General Biology II explores the evolution and biodiversity of representative organisms in the plant and animal kingdoms. Studies of plants investigate diversity, structure, and the physiology of absorption, transport, and photosynthesis. Students will examine the structure and life cycles of invertebrate and vertebrate animals. In a unit on Ecology, students will learn how living organisms interact with their environment. Laboratory exercises utilizing observation, experimentation, microscopy, and dissection provide practical demonstrations of the topics covered in lecture.

COURSE HOURS/ CREDITS: 3 lec., 3 lab., 4 credits

PREREQUISITES: BIO 101 General Biology I

GENERAL EDUCATION COURSE: Yes - Natural Sciences

BIOLOGY MAJOR/NONMAJOR COURSE

COURSE TEXTS AND/OR OTHER STUDY MATERIALS:

Textbook:

Laboratory Manual:
Study Guide: (Required for Dr. Crescitelli’s sections)

SUPPLEMENTARY MATERIALS:

Dissecting Kit
Colored Pencils

STUDENT LEARNING OBJECTIVES:

As a result of meeting the requirements in this course, students will be able to:

1. Survey the biodiversity that exists in the plant and animal kingdoms.
2. Apply scientific principles to gather and analyze biological data.
3. Develop laboratory skills, including the examination of living material, using the microscope, dissecting, and performing experiments to study physiological processes.
4. Identify the characteristics of the Plant Kingdom that distinguish plants from organisms in other Kingdoms.
5. Become aware of the diversity of the Plant Kingdom by completing an evolutionary survey of plant groups.
6. Investigate the adaptations that enabled plants to make the evolutionary transition from living in water to living on land.
7. Analyze the life cycles of plants and understand the concept of Alternation of Generations.
8. Examine key trends in the evolution of lower plants to higher plants, including the shift from dominance of the gametophyte to dominance of the sporophyte, and the shift from dependence of the sporophyte upon the gametophyte to dependence of the gametophyte upon the sporophyte.
9. Investigate the structure and function of plant organs including roots, stems, leaves, and flowers.
10. Analyze physiological processes in plants, including photosynthesis, absorption of water and minerals, and transport
of water and minerals and carbohydrates.

12. Identify the characteristics that distinguish animals from organisms in other Kingdoms and understand how they are used to classify animals.

13. Trace the evolution and diversity of invertebrate and vertebrate animals by way of an evolutionary survey.

14. Investigate the structure and physiological processes of representative animals.

15. Identify the evolutionary advancements and adaptations to the environment that have given particular animals advantages in occupying and utilizing niches in their environment.

16. Examine the process of reproduction and trace the life cycles of representative animals.

17. Identify the levels of organization of ecology, including populations, communities, ecosystems, biomes, and the biosphere.

18. Analyze the interactions between living organisms and physical factors (temperature, light, and moisture) as well as biotic factors (other living organisms) in their environment.

19. Examine the importance of biological principles such as evolution, biodiversity, and ecology to society.

ASSESSMENT CRITERIA:

Assessment of the above objectives will be based on student performance on lecture examinations, quizzes, laboratory reports, laboratory quizzes, and class participation as indicated by the instructor. A term paper may be assigned at the option of the instructor.

COURSE CONTENT

LECTURE TOPICS:

<table>
<thead>
<tr>
<th>WEEK</th>
<th>TOPIC</th>
<th>CHAP.</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction to the Plant Kingdom</td>
<td>30</td>
<td>588-613</td>
</tr>
<tr>
<td></td>
<td>Characteristics of Plants</td>
<td>30</td>
<td>588-590</td>
</tr>
<tr>
<td></td>
<td>Classification of Plants</td>
<td>30</td>
<td>593-595</td>
</tr>
<tr>
<td></td>
<td>Structure and Life Cycles of</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Pages</td>
<td>Range</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>2.</td>
<td>Structure and Life Cycles of non-seed vascular plants</td>
<td>30</td>
<td>596-601</td>
</tr>
<tr>
<td></td>
<td>Structure and Life Cycles of Gymnosperms</td>
<td>30</td>
<td>602-606</td>
</tr>
<tr>
<td>3.</td>
<td>Diversity of Angiosperms</td>
<td>30</td>
<td>606-610</td>
</tr>
<tr>
<td></td>
<td>Monocots and Dicots</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angiosperm Life Cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reproduction in Angiosperms</td>
<td>42</td>
<td>839-862</td>
</tr>
<tr>
<td></td>
<td>Structure of the Flower</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pollen and Egg Production</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pollination and Fertilization</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vegetative Plant Development</td>
<td>37</td>
<td>753-768</td>
</tr>
<tr>
<td></td>
<td>Fruit and Seed Development</td>
<td>37</td>
<td>761-768</td>
</tr>
<tr>
<td>4.</td>
<td>The Plant Body</td>
<td>36</td>
<td>729-768</td>
</tr>
<tr>
<td></td>
<td>Parts of a Typical Flowering Plant</td>
<td>36</td>
<td>730-731</td>
</tr>
<tr>
<td></td>
<td>Meristems</td>
<td>36</td>
<td>731-732</td>
</tr>
<tr>
<td></td>
<td>Types of Plant Tissues</td>
<td>36</td>
<td>733-738</td>
</tr>
<tr>
<td></td>
<td>Structure of the Root</td>
<td>36</td>
<td>739-743</td>
</tr>
<tr>
<td></td>
<td>Structure of the Root Tip</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structure of the Dicot Root</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structure of the Monocot Root</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structure of the Stem</td>
<td>36</td>
<td>743-747</td>
</tr>
<tr>
<td></td>
<td>Herbaceous Dicot Stem</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Woody Dicot Stem</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>External Anatomy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internal Anatomy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monocot Stem</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leaf Structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>External and Internal Anatomy</td>
<td>36</td>
<td>747-750</td>
</tr>
<tr>
<td>5.</td>
<td>Transport in Plants</td>
<td>38</td>
<td>770-785</td>
</tr>
<tr>
<td></td>
<td>Water and Mineral Absorption</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>By the Roots</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water and Mineral Transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Through the Stem</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transpiration from Leaves</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transpiration-Pull Mechanism</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transport of Carbohydrates</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pressure-Flow Mechanism</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Photosynthesis</td>
<td>8</td>
<td>147-166</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroplast Structure and</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6. Diversity of the Animal Kingdom 32 633-728
 Characteristics of Animals 32 634-648
 Classification of Animals

7. Parazoa 33 649-664
 Porifera 33 650-651
 Radiate Animals 33 652-656
 Cnidaria and Ctenophora
 Acoelomates 33 656-660
 Phylum Platyhelminthes
 Phylum Rhynchocoela

8. The Pseudocoelomates 33 661-663
 Phylum Nematoda
 Phylum Rotifera
 Coelomate Protostomes 34 666-692
 Phylum Mollusca 34 666-672
 Phylum Annelida 34 673-676

9. Phylum Arthropoda 34 678-687
 Coelomate Deuterostomes
 Phylum Echinodermata 34 687-690
 Phylum Hemichordata

10. Diversity of the Chordates 35 693-728
 Phylum Chordata 35 693-696
 Characteristics 35 696
 Subphylum Cephalochordata 35 695-696
 Subphylum Urochordata

11. Subphylum Vertebrata 35 696-728
 Characteristics of Vertebrates 35 696-697
 Fishes 35 698-702
 Amphibians 35 703-706
 Reptiles 35 706-711

12. Birds 35 712-715
 Mammals 35 716-726

13. Ecology 56 1162-1254
 Introduction to Ecology
The Biosphere
Levels of Organization in Ecology
Population Ecology 56 1165-1182
The Niche

14. Communities 57 1185-1206
Adaptations for Defense
Warning Coloration and Mimicry
Camouflagge
Symbiosis
 Mutualism
 Commensalism
 Parasitism

15. Ecosystems 58 1189-1210
Biogeochemical Cycles
Energy Flow in Ecosystems
Ecological Succession
Biomes 59 1230-1255

LABORATORY SCHEDULE

<table>
<thead>
<tr>
<th>WEEK</th>
<th>EXERCISE</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Liverworts and Mosses (Bryophyta)</td>
<td>2-7</td>
</tr>
<tr>
<td>2.</td>
<td>Club Mosses and Horsetails</td>
<td>9-13</td>
</tr>
<tr>
<td></td>
<td>Ferns (Pterophyta)</td>
<td>15-23</td>
</tr>
<tr>
<td>3.</td>
<td>The Pine and Other Gymnosperms</td>
<td>25-29</td>
</tr>
<tr>
<td>4.</td>
<td>The Flower, Development of the Embryo</td>
<td>31-43</td>
</tr>
<tr>
<td></td>
<td>Fruits and Seeds</td>
<td>45-49</td>
</tr>
<tr>
<td></td>
<td>Seed Germination and</td>
<td>50-53</td>
</tr>
<tr>
<td></td>
<td>Seedling Development</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>The Plant as a Whole</td>
<td>55-58</td>
</tr>
<tr>
<td></td>
<td>Investigating Plant Cells, Tissues</td>
<td>59-74</td>
</tr>
<tr>
<td></td>
<td>and Primary Growth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Investigating Primary and Secondary Growth</td>
<td>73-84</td>
</tr>
<tr>
<td></td>
<td>in Roots and Stems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Microscopic Structure of Leaves</td>
<td>91-97</td>
</tr>
<tr>
<td>6.</td>
<td>Transpiration Handout</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Assisted Lab</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Photosynthesis Handout</td>
<td></td>
</tr>
</tbody>
</table>

6
Absorption Spectra of Chloroplast Pigments

Computer Assisted Lab: Photosynthesis and Respiration

9. Survey of the Animal Kingdom
 Exercise 7
 The Sponges: Phylum Porifera
 Exercise 8
 The Radiate Animals:
 99-108

10. Exercise 9
 The Acoelomate Animals
 Exercise 10
 The Pseudocoelomate Animals:
 109-124

11. Exercise 11
 The Molluscs
 Exercise 12
 The Annelids
 127-158
 159-175
 177-192

12. Exercise 13
 The Chelicerate Arthropods
 Exercise 14
 The Crustacean Arthropods
 Exercise 15
 The Uniramia Arthropods:
 Myriapods and Insects
 Exercise 16
 The Echinoderms
 193-198
 199-210
 211-220
 235-252

13. Exercise 17
 Phylum Chordata
 Subphylum Urochordata
 Subphylum Cephalochordata
 253-260
 261-277

14. Phylum Chordata
 Exercise 19
 Class Amphibia: The Frog
 283-308

15. Symbiosis Laboratory Exercise Handout
SPECIAL FEATURES OF THE COURSE:

Technological Literacy: A number of laboratory exercises are conducted using laptop computers equipped with software programs that will collect data, analyze it, and graph it. These exercises will develop the ability of students to use computer technology to facilitate the analysis of laboratory data.

Research, Writing, and/or Examination Requirement(s):

Students will employ and develop writing skills in the completion of essay questions on examinations, questions on laboratory reports, and quizzes.

GRADING POLICY:

A. Unit Examinations: number____ ____%

B. Laboratory Work ... ____%

C. Reports/Projects ____%

D. Class Participation ____%

E. Other ... ____%

TOTAL ... 100 %

MAKE UP POLICY:

As indicated by instructor.

ATTENDANCE:

Attendance policy as indicated by instructor.

SMOKING/EATING/DRINKING:

Smoking is not allowed in any building on campus. Please do not bring food or drink into the classrooms or laboratories.

LABORATORY SAFETY:

Your laboratory instructor will review safety precautions prior to
each laboratory session. Careful adherence to these precautions is essential in order to prevent injury to yourself or to others working around you.