Program Directory

Carol Chovanec, M.S., R.T.T.
Program Director, Radiation Therapy Program
Room S 214
201-493-5034 (BCC)

Gia Montanez, A.A.S.
Clinical Coordinator, Radiation Therapy Program
Room S 214
201-689-7009 (BCC) / 973-738-2137 (c)

Table of Contents:

Radiation Therapy Program Clinical Curriculum p. 3
Direct Supervision Policy ... p. 3
Radiation Therapy Basic Skills Evaluation p.3-4
Professional Behavior Policy p. 4-5
Record Keeping Responsibilities p. 5
Evaluation Policy .. p. 5
Clinical Competency Evaluation Forms p. 6-20
Clinical Competency Requirement Form (ARRT) p. 21-23
Clinical Tracking Forms .. p. 24-26
Clinical Rotation Attendance Form p. 27
Student Assessment Forms / Criteria p. 28-31
Conference Form .. p. 32

OCCUPATIONAL HEALTH AND SAFETY ADMINISTRATION’S STANDARDS
RADIATION SAFETY:
Hospital and Department Safety Procedures p. 34-35
Infection Control / Standard Precautions p. 35-37
General Student Health and Safety Orientation p. 37-38
Environmental Protection – Toxic and Hazardous Materials p. 39-41
Orientation to Radiation Safety p. 42-50
Radiation Therapy Program Clinical Curriculum

1. Pre-Competency Requirements
 A. Demonstration of laboratory competency module
 B. Prior to attempting a competency evaluation, the student must document demonstration of at least two comparable patient set-ups. (assisted or unassisted under direct supervision) on the specific procedure. The two demonstrations are to be performed on two different patients when possible. Documentation is required.

2. Competency Requirements:
 A. A clinical competency requires both a psychomotor and cognitive evaluation.
 B. Students are evaluated from the criterion that is indicated on the Clinical Competency Evaluation forms.
 C. Points are awarded based on the Clinical Supervisor’s clinical judgment.

DIRECT SUPERVISION POLICY

All students and clinical staff are required to adhere to Bergen Community College policy and JRCERT standards requiring all radiation therapy procedures be performed under the Direct Supervision of a qualified practitioner. The Direct Supervision at all times policy will be strictly enforced by college and clinical staff and adhered to by students. The monitoring of such a policy will be overseen by the clinical supervisor and/or radiation therapist. Direct Supervision is as follows:

Clinical Supervision
All radiation therapy students must be under DIRECT CLINICAL SUPERVISION of a registered radiation therapist regardless of their level of competency of the student. The following are the prescribed parameters for direct clinical supervision:

 A qualified radiation therapist reviews the procedure in relation to the student’s achievement.

 A qualified radiation therapist evaluates the condition of the patient in relation to the student’s knowledge.

 A qualified radiation therapist is present during the conduct of the procedure

 A qualified radiation therapist reviews and approves the procedure

Radiation Therapy Basic Skill Evaluation

To demonstrate the goals of the program, upon completion the graduate will be able to perform
the following:

- Administer radiation therapy as prescribed by the physician.
- Display professional conduct essential to the well being of the radiation oncology patient.
- Demonstrate effective written communication skills; Maintain accurate and detailed treatment chart documentation.
- Demonstrate effective verbal communication skills in the clinical setting.
- Observe the clinical progress of the radiation oncology patient, use clinical decision making skills to recognize and report any signs of complications.
- Utilize treatment accessories to accurately reproduce the radiation treatment.
- Adhere to radiation safety procedure protocol.
- Safely and effectively operate a variety of computerized simulation and treatment machines.
- Perform machine safety checks, know safe limits of equipment operations, and report abnormalities or inconsistencies to the proper authority.
- Construct immobilization devices and employ custom blocking techniques that are conducive to conformal radiation therapy.
- Utilize sophisticated imaging equipment and treatment planning systems for precise tumor localization.
- Work closely with the radiation Oncologist and the therapy team in the preparation of a treatment plan that is customized to the patient’s needs.
- Adhere to the Radiation Therapist Code of Ethics.

Professional Behavior Policy:

Radiotherapy students are required to:
- comply with the policies of the affiliate since students are guests of the Hospital.
- adhere to all Radiation Therapy Department policies.
- conduct themselves in a professional manner at all times.
- professional ethics:
 1. the student may not turn the key to any treatment machine.
 2. the student may not study at the treatment or simulator console.
 3. the student may not read magazines or newspapers while at the treatment console.
 4. the student is to keep the patient chart open until the completion of the patient’s treatment.
 5. the student will audibly and visually monitor the patient at all times.
 6. the student will avoid eating, drinking and gum chewing within the sight of patients.
 7. the student will never leave patients unattended.
 8. The student will address faculty, management, staff and patients in a professional manner.
- inform the program of address or phone number changes.
- maintain professional credentials as required by the program.
- sign, date and return all original clinical competency and student assessment forms.
to the designated clinical supervisor. **No copies will be accepted.**

- avoid using the department’s telephones for personal use- emergencies only.
- notify the instructor or designee before leaving the department.
- maintain pagers on “pulse” mode.

Record Keeping Responsibilities:

- **Clinical Forms:**

 a. Clinical Competency Evaluation Forms (43 competencies are required)
 b. Clinical Competency Requirement Form (ARRT requirement form)
 c. Clinical Tracking Forms (documenting two demonstrations prior to competency)
 d. Attendance Form (Fall, Spring and Summer Semesters)
 e. Student Assessment Forms (three per semester – following every clinical rotation)
 f. Student Conference Form (to supplement Student Assessment Form)

- Clinical Supervisors are responsible for accurately recording and maintaining all Clinical Competency Evaluation Forms and Student Assessment Forms (including Student Conference Forms). Students are encouraged to make copies of all forms as they are submitted. All forms will be collected, tallied and secured by the Senior Clinical Supervisor. No copies will be accepted.

- Clinical Competency Requirement Form (ARRT requirement form), Clinical Tracking Forms and Attendance Forms are the responsibility of the student and will be delivered directly to the Senior Clinical Supervisor by the student. Students are encouraged to make copies of all forms as they are submitted. No copies will be accepted.

Evaluation Policy

- The student will review their didactic and clinical progress with the Program Director and Senior Clinical Supervisor at a mid-semester conference. At the end of the semester, the Program Director and Senior Clinical Supervisor will meet with the student to discuss the cumulative results. Attendance, program completion requirements and academic status will be discussed at these meetings.

- Clinical Evaluation Forms, Student Assessment Forms and Attendance Forms will be used to determine the students’ clinical grade. Clinical Evaluation Forms and Student Assessment Forms will be completed by the designated Radiation Therapy Clinical Supervisor with input from the staff. The evaluations will be based on the student’s overall performance in accordance with specific objectives for each semester. The cognitive, psychomotor and affective domains are evaluated by the student assessment form once during each rotation (3 times per semester).
Clinical Competency Forms

1. Clinical Competency Evaluation Forms – Completed by an appointed Clinical Supervisor. It is to be reviewed with the student and signed at the time of completion. The Clinical Supervisor will submit completed forms to the Senior Clinical Supervisor in a timely manner. Only original forms will be accepted.

2. Treatment Machine Procedures (pages 7 & 8) – RTT 121
3. Treatment Machine or Low Volume/High Risk Procedure (pages 9 & 10) – RTT 221-222
4. C.T. Simulation Procedure (pages 11 & 12)
5. Fluoro Procedure (pages 13 & 14) – RTT 121 / 221, 222
6. Beam Modification Devices (pages 15 & 16)
7. Dosimetry (pages 17 & 18)
8. General Patient Care (pages 19 & 20)

2. Clinical Competency Requirements Form (pages 21 - 23) – These forms are in accordance with ARRT requirements for registration examination eligibility. These forms will be given to the student at the beginning of the program and will serve as documentation for the successful completion of all required competencies. The student is responsible for securing the completed forms and bringing them to the mid and end semester evaluation meetings. The student is responsible for submitting these forms directly to the Senior Clinical Supervisor. Only original forms will be accepted.

3. Clinical Tracking Forms (pages 24 – 26) – The student will track their development from laboratory to demonstration to clinical competency. The purpose of this form is to assure a progressive learning experience from didactic to laboratory to clinical competency. The student is responsible for submitting these forms directly to the Senior Clinical Supervisor. Only original forms will be accepted.

4. Clinical Rotation Attendance Form (page 27) – This form is given to the student at the beginning of the school year and as needed. On a daily basis, the student is responsible for signing in and out at the time of arrival and departure. On a daily basis, the student is responsible for obtaining verification with an authorized signature. A clinic representative, i.e., radiation therapist, nurse, dosimetrist, physicist, who is present when the student arrives and leaves may sign this form. The student is responsible for submitting these forms directly to the Senior Clinical Supervisor. Only original forms will be accepted.

5. Student Assessment Form (pages 28 – 31) - Completed by the Clinical Supervisor with input from the staff. It is to be completed for each student once during each clinical rotation (3 per semester). The Radiation Therapy Clinical Supervisor is responsible for delivery of the completed form to the program Senior Clinical Supervisor in a timely manner. Only original forms will be accepted.

The Criteria Guidelines for the Student Assessment Form is used to define the criteria for evaluation.

6. Student Conference Form (page 32) – Used for comments and clarification of the completed Student Assessment Form. It is used to document student progress and possible areas of concern and improvement. Both student and staff will verify acknowledgement with signatures.
Clinical Manual Section II

BERGEN COMMUNITY COLLEGE
RADIATION THERAPY TECHNOLOGY PROGRAM

CLINICAL COMPETENCY EVALUATION – RTT 121

TREATMENT MACHINE PROCEDURE

A student is eligible to perform a clinical evaluation after successful completion of a laboratory competency module and 2 (two) clinical demonstrations (assisted or unassisted under direct supervision) on the specific procedure.

*Core Competency Questions: A grade of 4 (A) on questions 6, 10 and 11 is required to pass the competency.

Successfully completed: Lab. module _____ Two Patient Demonstrations ______

Patient _____ Simulated _____ Procedure ____________________________________

Student ___ Date ____________

Please check the appropriate performance based on the student’s demonstrated ability. A minimum of a Good / Competent rating must be achieved in each task in order to successfully complete the evaluation. Comment on any rating below 2.

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Numerical Range</th>
<th>Conversion</th>
<th>Numerical Grade Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90% to 100%</td>
<td>Excellent / Distinguished</td>
<td>4</td>
</tr>
<tr>
<td>B+</td>
<td>85% to 89.9%</td>
<td>Very Good / Above Average</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>80% to 84.9%</td>
<td>Good / Competent – Average for Level of Training</td>
<td>2</td>
</tr>
<tr>
<td>C+</td>
<td>75% to 79.9%</td>
<td>Acceptable / Marginal and Conditional</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>70% to 74.9%</td>
<td>Poor / Unsatisfactory and Failing</td>
<td>0</td>
</tr>
</tbody>
</table>

1. Review chart and information system accuracy prior to preparing patient for treatment. [___ ___ ___ ___ ___ ___ ___]
2. Explain physician’s orders and dose prescription. [___ ___ ___ ___ ___ ___ ___]
3. Prepare treatment room prior to admitting patient. [___ ___ ___ ___ ___ ___ ___]
4. Describe pathology and stage of disease. [___ ___ ___ ___ ___ ___ ___]
5. Greet / Escort correct patient to / from treatment area. [___ ___ ___ ___ ___ ___ ___]
6. *Confirm patient’s identity as correct. [___ ___ ___ ___ ___ ___ ___]
7. Assist the patient onto the treatment table using proper body mechanics or adequate lifting assistance. [___ ___ ___ ___ ___ ___ ___]
8. Explain procedure and confirm patient understanding. [___ ___ ___ ___ ___ ___ ___]
9. Position patient to reproduce set-up as indicated in treatment chart. [___ ___ ___ ___ ___ ___ ___]
10. *Use the correct positioning and immobilization device [___ ___ ___ ___ ___ ___ ___]
11. *Position treatment machine to reproduce set-up as indicated in treatment chart.*

12. Apply principles of radiation protection.

13. Use appropriate accessory devices safely and correctly.

14. Select the proper tray, blocks, template, etc., and use them as indicated on treatment chart.

15. Insert correct wedge properly.

16. Recheck set-up with treatment chart before leaving the room.

17. Instruct patient to maintain position during treatment.

18. Set, activate appropriate controls on console.

19. Monitor patient both visually and audibly.

21. Record pertinent data concerning patient status on proper document.

22. Record, add, and initial daily treatment entry and accumulated dose.

23. Capture treatment and port film charges.

24. React effectively in the event of treatment machine malfunction or radiation hazard. Describe the correct procedure to follow in case of malfunction or emergency.

25. All of the above done in a timely manner.

Comments:

__

__

Designated Clinical Supervisor Signature

Print Name ____________________________ Date ____________

Clinical Site __________________________ Treatment Unit ______________

Student Signature __________________________ Date ____________
Clinical Manual Section II

BERGEN COMMUNITY COLLEGE
RADIATION THERAPY TECHNOLOGY PROGRAM

CLINICAL COMPETENCY EVALUATION - RTT 221 / RTT 222

PROCEDURE: TREATMENT MACHINE □ / LOW VOLUME - HIGH RISK □

Student __ Date ______________

Successfully completed: Lab. module ______ Two Patient Demonstrations _________

Patient _____ Simulated ____ Procedure _____________________________________

Clinical Site ________________________________ Treatment Unit _________________

Designated Clinical Supervisor (print name) ____________________________________

* Core Competency Questions: A grade of 4 (A) on questions 10 and 11 is required to pass the competency.

Please check the appropriate performance based on the student’s demonstrated ability. A minimum of a Good / Competent rating must be achieved in each task in order to successfully complete the evaluation. Comment on any rating below 2.

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Numerical Range</th>
<th>Conversion</th>
<th>Numerical Grade Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90% to 100%</td>
<td>Excellent / Distinguished</td>
<td>4</td>
</tr>
<tr>
<td>B+</td>
<td>85% to 89.9%</td>
<td>Very Good / Above Average</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>80% to 84.9%</td>
<td>Good / Competent – Average for Level of Training</td>
<td>2</td>
</tr>
<tr>
<td>C+</td>
<td>75% to 79.9%</td>
<td>Acceptable / Marginal and Conditional</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>70% to 74.9%</td>
<td>Poor / Unsatisfactory and Failing</td>
<td>0</td>
</tr>
</tbody>
</table>

4 3 2 1 0 N/A

1. Review chart and information system accuracy prior to preparing patient for treatment. [____ ____ ____ ____ ____ ____]
2. Explain physician’s orders and dose prescription. [____ ____ ____ ____ ____ ____]
3. Prepare treatment room prior to admitting patient. [____ ____ ____ ____ ____ ____]
4. Correlate pathology, stage of disease and field arrangement [____ ____ ____ ____ ____ ____]
5. Greet patient, confirm patient’s identity as correct and escort patient to and from treatment area. [____ ____ ____ ____ ____ ____]
6. Assist the patient onto the treatment table using proper body mechanics or adequate lifting assistance. [____ ____ ____ ____ ____ ____]
7. Explain procedure and confirm patient understanding. [____ ____ ____ ____ ____ ____]
8. Identify patients on treatment protocols and describe any procedures specific to that protocol [____ ____ ____ ____ ____ ____]
9. Position patient to reproduce set-up as indicated in treatment chart. [____ ____ ____ ____ ____ ____]
10. *Safe and appropriate use of:
 - correct positioning and immobilization devices
 - accessory devices
 - tray, blocks, template, etc.
 - correct wedge properly inserted.

11. *Position treatment machine to reproduce set-up as indicated in treatment chart.

12. Apply principles of radiation protection.

13. Discuss matching borders and gaps when applicable.

14. Demonstrate ability to take, evaluate and document port films.

15. Recheck set-up with treatment chart before leaving the room.

17. Set, activate appropriate controls on console.

18. Monitor patient both visually and audibly.

20. Assess and evaluate patient’s physical and emotional status, recognize radiation induced side effects and respond appropriately to changes in the patient’s condition.

21. Record, add, and initial daily treatment entry and accumulated dose.

22. Capture treatment and port film charges.

23. React effectively in the event of treatment machine malfunction or radiation hazard. Describe the correct procedure to follow in case of malfunction or emergency.

25. All of the above done in a timely manor.

Comments:

__________________________ __________________________
Clinical Supervisor Signature Date

__________________________ __________________________
Student Signature Date

Clinical Manual Sect. II 8.09
PROCEDURE: C.T. SIMULATION

DAILY Q.A.

A student is eligible to perform a clinical evaluation after successful completion of a laboratory competency module and 2 (two) clinical demonstrations (assisted or unassisted under direct supervision) on the specific procedure.

All simulation competencies must be demonstrated on patients.

Procedure ___

Student __ Date____________

Please check the appropriate performance based on the student’s demonstrated ability. A minimum of a Good / Competent rating must be achieved in each task in order to successfully complete the evaluation. Comment on any rating below 2.

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Numerical Range</th>
<th>Conversion</th>
<th>Numerical Grade Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90% to 100%</td>
<td>Excellent / Distinguished</td>
<td>4</td>
</tr>
<tr>
<td>B+</td>
<td>85% to 89.9%</td>
<td>Very Good / Above Average</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>80% to 84.9%</td>
<td>Good / Competent – Average for Level of Training</td>
<td>2</td>
</tr>
<tr>
<td>C+</td>
<td>75% to 79.9%</td>
<td>Acceptable / Marginal and Conditional</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>70% to 74.9%</td>
<td>Poor / Unsatisfactory and Failing</td>
<td>0</td>
</tr>
</tbody>
</table>

1. Obtain necessary patient and physician information before the start of the simulation.

2. Prepare the room prior to the start of the simulation procedure.

3. Explain physician’s orders in relation to patient position, immobilization devices, equipment and contrast media.

4. Describe pathology and stage of disease.

5. Turn machine ON/OFF and observe C.T. scanner warm up procedures.

7. Explain procedure and confirm patient understanding.

8. Obtain necessary identification and authorization documentation.

9. Locate and operate couch movement controls.

10. Identify and explain proper use of the inside and outside lasers.

Letter Grade Numerical Range Conversion Numerical Grade Equivalent

1 2 3 4 0 N/A
11. Assist the patient onto the C.T simulation table using proper: body mechanics or adequate lifting assistance.

13. Determine the placement of the pilot scan.

14. Take the pilot scan and determine where C.T. slices are to be obtained (sim sheet).

15. Accurately mark patient treatment area.

17. Inform patient of the importance of reproducibility. Tattoo or Tegaderm marks.

18. Prepare immobilization device and demonstrate patient immobilization.

19. Demonstrates radiation protection ALARA principles.

20. Monitors the patient and demonstrates appropriate patient care.

22. Interpret the information on the DRR and worksheet.

23. Interpret coordinates from the simulation sheet

24. Record patient position and other required information.

RTT 221 / RTT 222 to be demonstrated once during second and third semester:

25. Perform daily QC as per protocol of department.

26. Review and discuss CT scan and treatment plan with clinical supervisor, medical physicist or dosimetrist.

Comments:

__

__

__

__

Designated Clinical Supervisor Signature

Print Name ___ Date__________

Clinical Site ________________________________ Simulation Unit ______________

Student Signature _________________________________ Date __________
PROCEDURE: FLUORO SIMULATION ☐ DAILY Q.A. ☐

A student is eligible to perform a clinical evaluation after successful completion of a laboratory competency module and 2 (two) clinical demonstrations (assisted or unassisted under direct supervision) on the specific procedure.

All simulation competencies must be demonstrated on patients.

Please check the appropriate performance based on the student’s demonstrated ability. A minimum of a Good / Competent rating must be achieved in each task in order to successfully complete the evaluation. Comment on any rating below 2.

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Numerical Range</th>
<th>Conversion</th>
<th>Numerical Grade Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90% to 100%</td>
<td>Excellent / Distinguished</td>
<td>4</td>
</tr>
<tr>
<td>B+</td>
<td>85% to 89.9%</td>
<td>Very Good / Above Average</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>80% to 84.9%</td>
<td>Good / Competent – Average for Level of Training</td>
<td>2</td>
</tr>
<tr>
<td>C+</td>
<td>75% to 79.9%</td>
<td>Acceptable / Marginal and Conditional</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>70% to 74.9%</td>
<td>Poor / Unsatisfactory and Failing</td>
<td>0</td>
</tr>
</tbody>
</table>

1. Obtain necessary patient and physician information before the start of the simulation. 4 3 2 1 0 N/A
2. Prepare the room prior to the start of the simulation procedure. _________________
3. Explain physician’s orders in relation to patient position, immobilization devices, equipment and contrast media. _________________
4. Describe pathology and stage of disease. _________________
5. Greet / Escort correct patient to / from simulator. _________________
6. Explain procedure and confirm patient understanding. _________________
7. Obtain necessary identification and authorization documentation. _________________
8. Assist the patient onto the simulation table using proper body mechanics or adequate lifting assistance. _________________
9. Position patient appropriately for simulation procedure. _________________
10. Prepare immobilization device and demonstrate patient immobilization. _________________
11. Position the fluoro simulator to produce the set-up as requested by the radiation oncologist.

12. Call the radiation oncologist to start the fluoroscopic simulation.

14. Monitors the patient and demonstrates appropriate patient care.

15. Sets appropriate radiographic technique and obtain appropriate films.

16. Demonstrate appropriate film processing technique.

17. Accurately label simulation films and film jacket.

19. Obtain contour and record all measurements and set-up instructions.

20. Record machine set-up parameters.

21. Photograph treatment marks and patient in treatment position.

22. Inform patient of the importance of reproducibility.
 Tattoo or Tegaderm marks.

23. Differentiate between SSD and SAD technique.

24. Draw and label diagram of the treatment field in the chart.

25. Estimate equivalent square.

26. Determine magnification factor from radiograph

27. Determine field size or TFD from radiograph

28. Perform simulator QA as per protocol of department

RTT 221 / RTT 222 to be demonstrated once during second and third semester

Comments:

__

Designated Clinical Supervisor Signature

Print Name _______________________________ Date __________

Clinical Site ____________________________ Simulation Unit __________

Student Signature __________________________ Date __________
BERGEN COMMUNITY COLLEGE
RADIATION THERAPY TECHNOLOGY PROGRAM

CLINICAL COMPETENCY EVALUATION

BEAM MODIFICATION DEVICES

A student is eligible to perform a clinical evaluation after successful completion of a laboratory competency module and 2 (two) clinical demonstrations (assisted or unassisted under direct supervision) on the specific procedure.

Patient _______ Simulated ________

Student ___ Date ___________

Procedure:

Photon Block Fabrication ______
Electron Block Fabrication ______
Bolus Fabrication ______

Please check the appropriate performance based on the student’s demonstrated ability. A minimum of a Good / Competent rating must be achieved in each task in order to successfully complete the evaluation. Comment on any rating below 2.

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Numerical Range</th>
<th>Conversion</th>
<th>Numerical Grade Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90% to 100%</td>
<td>Excellent / Distinguished</td>
<td>4</td>
</tr>
<tr>
<td>B+</td>
<td>85% to 89.9%</td>
<td>Very Good / Above Average</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>80% to 84.9%</td>
<td>Good / Competent – Average for Level of Training</td>
<td>2</td>
</tr>
<tr>
<td>C+</td>
<td>75% to 79.9%</td>
<td>Acceptable / Marginal and Conditional</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>70% to 74.9%</td>
<td>Poor / Unsatisfactory and Failing</td>
<td>0</td>
</tr>
</tbody>
</table>

1. Accurately select correct patient and simulation films
2. Accurately select correct TFD / SFD.
3. Accurately select correct orientation for the block to be cut.
4. Accurately mark the correct location of the handle on the Styrofoam.
5. Accurately verify the blocked field using the field light coincidence.
6. Correctly label the Styrofoam.
7. Employ safety and hazardous waste precautions.
Clinical Manual Section II

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. Accurately mount cerrobend blocks to Lucite tray.

9. Accurately label the completed block(s).

10. Differentiate between a positive and negative block.

11. Accurately fabricate an electron cut-out.

12. Accurately label an electron cut-out.

13. Demonstrate custom bolus fabrication.

Comments:

Designated Clinical Supervisor Signature

Print Name ________________________________ Date ________

Clinical Site ______________________________

Student Signature _________________________ Date ________
BERGEN COMMUNITY COLLEGE
RADIATION THERAPY TECHNOLOGY PROGRAM

CLINICAL COMPETENCY EVALUATION

DOSIMETRY

Patient _______ Simulated ________

Student ___ Date __________

Procedure ________________________________

Clinical Site ____________________________ Tx. Planning System ________________

Please check the appropriate performance based on the student’s demonstrated ability. A minimum of a Good / Competent rating must be achieved in each task in order to successfully complete the evaluation. Comment on any rating below 2.

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Numerical Range</th>
<th>Conversion</th>
<th>Numerical Grade Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90% to 100%</td>
<td>Excellent / Distinguished</td>
<td>4</td>
</tr>
<tr>
<td>B+</td>
<td>85% to 89.9%</td>
<td>Very Good / Above Average</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>80% to 84.9%</td>
<td>Good / Competent – Average for Level of Training</td>
<td>2</td>
</tr>
<tr>
<td>C+</td>
<td>75% to 79.9%</td>
<td>Acceptable / Marginal and Conditional</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>70% to 74.9%</td>
<td>Poor / Unsatisfactory and Failing</td>
<td>0</td>
</tr>
</tbody>
</table>

1. Interpret dose prescription. ___________ ___________ ___________ ___________ ___________
2. Accurately perform point calculations on the computer. ___________ ___________ ___________ ___________ ___________
3. Correlate components of the treatment chart with the simulator films and worksheets. ___________ ___________ ___________ ___________ ___________
4. Calculate the blocked equivalent square. ___________ ___________ ___________ ___________ ___________
5. Explain tissue compensators. ___________ ___________ ___________ ___________ ___________
6. Create a treatment plan and calculations for a single, open field. ___________ ___________ ___________ ___________ ___________
7. Create a treatment plan for parallel opposed fields with blocks. ___________ ___________ ___________ ___________ ___________
8. Create a treatment plan for a wedged field or tangents. ___________ ___________ ___________ ___________ ___________
9. Create a treatment plan for an electron field. ___________ ___________ ___________ ___________ ___________
10. Create a computer generated isodose plan. ____ ____ ____ ____ ____ ____
11. Accurately calculate given dose. ____ ____ ____ ____ ____ ____
12. Accurately calculate % depth dose. ____ ____ ____ ____ ____ ____
13. Accurately calculate monitor units / time. ____ ____ ____ ____ ____ ____
15. Accurately calculate weighted fields and evaluate for optimum dose distribution. ____ ____ ____ ____ ____ ____
16. Perform SSD, SAD, and extended distance SSD calculations. ____ ____ ____ ____ ____ ____
17. Define treatment volume, target volume, tumor volume and critical structures. ____ ____ ____ ____ ____ ____
18. Explain tumor lethal dose and normal tissue tolerance dose. ____ ____ ____ ____ ____ ____
19. Design, compare and contrast treatment plans. ____ ____ ____ ____ ____ ____

Comments:

__
__
__

Designated Clinical Supervisor / Representative Signature __

Print Name ___ Date __________

Student Signature ___ Date __________
BERGEN COMMUNITY COLLEGE
RADIATION THERAPY TECHNOLOGY PROGRAM

CLINICAL COMPETENCY EVALUATION

GENERAL PATIENT CARE

A student is eligible to perform a clinical evaluation after successful completion of a laboratory competency module and 2 (two) clinical demonstrations (assisted or unassisted under direct supervision) on the specific procedure.

Patient ____ Simulated ____

Procedure:

Vital Signs (Blood Pressure, Pulse, Respiration, Temperature) _____
CPR Verification _____
Oxygen Administration _____
Patient Transfer _____

Student ___________________________ Date __________________

Please check the appropriate performance based on the student’s demonstrated ability. A minimum of a Good / Competent rating must be achieved in each task in order to successfully complete the evaluation. Comment on any rating below 2.

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Numerical Range</th>
<th>Conversion</th>
<th>Numerical Grade Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90% to 100%</td>
<td>Excellent / Distinguished</td>
<td>4</td>
</tr>
<tr>
<td>B+</td>
<td>85% to 89.9%</td>
<td>Very Good / Above Average</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>80% to 84.9%</td>
<td>Good / Competent – Average for Level of Training</td>
<td>2</td>
</tr>
<tr>
<td>C+</td>
<td>75% to 79.9%</td>
<td>Acceptable / Marginal and Conditional</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>70% to 74.9%</td>
<td>Poor / Unsatisfactory and Failing</td>
<td>0</td>
</tr>
</tbody>
</table>

Vital Signs

1. Accurately perform vital signs (blood pressure, pulse, respiration and temperature)

2. Accurately document vital signs.

3. Identify the equipment needed to take pulse, blood pressure and respiration.
Clinical Manual Section II

CPR
4. Properly perform CPR
5. Present current CPR card Expiration Date ________________

Oxygen Administration
6. Explain apparatus for O2 administration.
7. Set the O2 dose in accordance with the prescription.
8. Demonstrate O2 administration

Patient Transfer
9. Safely and effectively transfer patient from stretcher to table.
10. Safely and effectively transfer patient from wheel chair to table.

Comments:

Designated Clinical Supervisor Signature __

Print Name __ Date ____________

Clinical Site __

Student Signature ___ Date ________
Bergen Community College
Radiation Therapy Technology Program

RADIATION THERAPY CLINICAL COMPETENCY REQUIREMENTS

RADIATION TREATMENT PROCEDURES
Candidates must demonstrate competence in the 20 procedures identified below. Fifteen of the treatment procedures must be demonstrated on patients; five procedures may be demonstrated under simulated conditions if demonstration on patients is not feasible. Demonstration of competence does not require actual delivery of dose.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Date Completed</th>
<th>Patient or Simulated</th>
<th>Verified By</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metastatic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEAD AND NECK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laterals Only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Field – Laterals and Supraclavicular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP/PA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obliques</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BREAST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tangentials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supraclavicular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posterior Axilla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABDOMEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP/PA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 or More Fields</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Para-Aortic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PELVIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP/PA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple Field Supine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple Field Prone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inguinal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKELETAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extremity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTRON FIELDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abutting Fields</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SIMULATION PROCEDURES
Competency may be demonstrated on a conventional simulator, CT simulator or treatment machine. All simulation procedures must be demonstrated on patients.

<table>
<thead>
<tr>
<th>Date Completed</th>
<th>Patient Verified By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain</td>
<td></td>
</tr>
<tr>
<td>Head and Neck</td>
<td></td>
</tr>
<tr>
<td>Chest</td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td></td>
</tr>
<tr>
<td>Abdomen</td>
<td></td>
</tr>
<tr>
<td>Pelvis</td>
<td></td>
</tr>
<tr>
<td>Skeletal</td>
<td></td>
</tr>
</tbody>
</table>

DOSIMETRY
Calculations should be performed for actual patients; however, calculations may be completed for simulated patients if demonstration on actual patients is not feasible. Perform calculations for each of the following:

<table>
<thead>
<tr>
<th>Date Completed</th>
<th>Patient or Simulated</th>
<th>Verified By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single, Open Field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallel Opposed Fields with Blocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometric Gap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weighted Fields</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wedged Fields</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Generated Isodose Plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron Field</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BEAM MODIFICATION DEVICES
Competency is demonstrated by fabricating the following:

<table>
<thead>
<tr>
<th>Date Completed</th>
<th>Patient or Simulated</th>
<th>Verified By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custom Blocks (Photon)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Custom Blocks (Electron)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RADIATION THERAPY CLINICAL COMPETENCY REQUIREMENTS

GENERAL PATIENT CARE
The activities should be performed on patients; however, simulation is acceptable if state or institutional regulations prohibit candidate from performing the procedure on patients. Competency is demonstrated by performing:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Date Completed</th>
<th>Patient or Simulated</th>
<th>Verified By</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vital Signs (BP, pulse, respiration, temperature)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2 Administration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient Transfer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOW VOLUME / HIGH RISK PROCEDURES
Competence may be demonstrated under simulated conditions if necessary. Demonstration of competence does not require actual delivery of treatment dose. Competence is demonstrated by performing the following:

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Date Completed</th>
<th>Patient or Simulated</th>
<th>Verified By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Body Irradiation (TBI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Craniospinal</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRACHYTHERAPY – Observation strongly recommended.

Semester / Date - ________________________________ Verified By: ______________

Procedure - _____________________________________
Bergen Community College - Radiation Therapy Training Program

CLINICAL TRACKING FORM

Radiation Treatment Procedures

<table>
<thead>
<tr>
<th>EXAMINATION</th>
<th>Lab Module Date</th>
<th>Demonstration # 1 Date</th>
<th>Demonstration # 2 / Date</th>
<th>Pass / Fail *</th>
<th>RTT Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A failing grade requires the student to complete two additional demonstrations before each additional competency attempt.
Bergen Community College - Radiation Therapy Training Program

CLINICAL TRACKING FORM

Simulation Procedures

<table>
<thead>
<tr>
<th>NAME______________________________</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>EXAMINATION</th>
<th>Lab Module Date</th>
<th>Demonstration # 1 Date</th>
<th>Demonstration # 2 Date</th>
<th>Pass / Fail *</th>
<th>RTT Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A failing grade requires the student to complete two additional demonstrations before each additional competency attempt.
Bergen Community College - Radiation Therapy Training Program

CLINICAL TRACKING FORM

Beam Modification Devices / Patient Care

<table>
<thead>
<tr>
<th>NAME</th>
<th>EXAMINATION</th>
<th>Lab Module Date</th>
<th>Demonstration # 1 Date</th>
<th>Demonstration # 2 Date</th>
<th>Pass / Fail *</th>
<th>RTT Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A failing grade requires the student to complete two additional demonstrations before each additional competency attempt.
Clinical Manual Section II

Bergen Community College - Radiation Therapy Training Program
CLINICAL ROTATION ATTENDANCE FORM 2009 – 2010

<table>
<thead>
<tr>
<th>NAME</th>
<th>Date</th>
<th>IN</th>
<th>OUT</th>
<th>Clinical Representative</th>
<th>Date</th>
<th>IN</th>
<th>OUT</th>
<th>Clinical Representative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STUDENT ASSESSMENT FORM

Student: ___ **Date:** __________

Clinical Supervisor: __________________________________

Clinical Site: ___ **Grade:** _________

Semester: () Fall () Spring () Summer

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Numerical Range</th>
<th>Conversion</th>
<th>Numerical Grade Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90% to 100%</td>
<td>Excellent / Distinguished</td>
<td>4</td>
</tr>
<tr>
<td>B+</td>
<td>85% to 89.9%</td>
<td>Very Good / Above Average</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>80% to 84.9%</td>
<td>Good / Competent – Average for Level of Training</td>
<td>2</td>
</tr>
<tr>
<td>C+</td>
<td>75% to 79.9%</td>
<td>Acceptable / Marginal and Conditional</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>70% to 74.9%</td>
<td>Poor / Unsatisfactory and Failing</td>
<td>0</td>
</tr>
</tbody>
</table>

I. Dependability

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Grade</th>
<th>Points</th>
<th>Total Group Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Follows absentee protocol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 Punctual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 Responsible for assignment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Discretion and Judgment

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Grade</th>
<th>Points</th>
<th>Total Group Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>04 Appropriate behavior</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. Communication Skills

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Grade</th>
<th>Points</th>
<th>Total Group Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>05 Helpful / cooperative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06 Attitude</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07 Enthusiastic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08 Adaptable</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IV Professional Ethics

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Grade</th>
<th>Points</th>
<th>Total Group Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 Conduct / Leadership</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Confidence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Courteous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Respect authority and diversity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

V Affective Behavior

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Grade</th>
<th>Points</th>
<th>Total Group Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Patient care skills</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Effectiveness / confidence</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VI Technical Skills

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Grade</th>
<th>Points</th>
<th>Total Group Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Quantity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Quality</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VII Organization

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Grade</th>
<th>Points</th>
<th>Total Group Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 Work sequence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Equipment manipulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Maintains performance records</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VIII Safety

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Grade</th>
<th>Points</th>
<th>Total Group Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Patient safety</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 Universal precautions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 Radiation safety</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IX Critical Thinking Skills

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Grade</th>
<th>Points</th>
<th>Total Group Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 Information assimilation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Reasoning and problem solving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Routine and non-routine procedures</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinical Supervisor Signature: _______________________________ Date ________
Student Signature: __ Date ________
Criteria Guidelines for: Student Assessment Form

Dependability:
01. Adheres to attendance policy (see RTT Student Handbook / Syllabus)
02. Adheres to clinical time schedule
03. Self motivated, responsible, and an independent learner

Discretion and Judgment:
04. Assesses the situation and exercises care, discretion and judgment with appropriate speech and actions.

Communication Skills:
05. Helpful and cooperative: demonstrates tact, diplomacy, and good interaction with staff, administrators and instructors.
06. Positive attitude toward clinical experience and patients (including non-conforming patients).
07. Responds professionally, benefits from suggestions, maintains open dialog with instructor, and communicates respect to others.
08. Able to adapt, at their academic level, to the clinical site, staff, environment, equipment and procedures.

Professional Ethics:
09. Demonstrates leadership qualities by professional interactions with patients, physicians, staff, instructors and peers. Complies with policies of the program at all times.
10. Is capable of agreeing / disagreeing with staff, doctors, administrators and instructors in a calm, direct manner.
11. Does not discuss patient’s diagnosis or prognosis with others.
12. Demonstrates respect and compassion for patients of all cultures by using proper names, protects patient privacy, aids patient comfort, and assists patient when possible.

Affective Behavior:
13. Speaks confidently to patients in a calm manner, instills a sense of security, explains procedures thoroughly to patients at their level of understanding. Demonstrates instructions to non-English speaking patients when necessary. Is confident in verbal, writing, computer skills as they pertain to completing requisition.
14. Focuses attention on the patient from the moment of introduction to the patient's dismissal from the department. Is aware of the patient's needs at all times. Creates a caring, comfortable safe atmosphere for the patient. Smiles and extends him/herself to the patient. Demonstrates professional behavior.

Technical Skills:

15. Quantity - Attempts a variety of procedures, works within a reasonable time frame, is self motivated and uses time wisely.

16. Quality - Reads the chart and follows patient set-up instructions. Demonstrates accuracy and is thorough with chart documentation. Makes the patient a first priority. Contributes to the cohesiveness of the work environment.

Organization:

17. Patient comfort, protocols, works in a logical manner that contributes to team building.

18. Handles equipment in appropriate manner, cleanliness of room, supplies, prepares the room prior to the patient's arrival. Insures emergency equipment is available.

19. Maintains performance records, keeps logs, attendance forms and performance records up-to date.

Safety:

20. Ensures patient's physical safety, protects the patient from falling, helps patient onto table, helps patient out of wheelchair, demonstrates safety and provides patient comfort during stretcher transfers.

22. Radiation safety - uses proper collimation and radiation safety techniques to protect the patient and self from unnecessary radiation exposure.

Critical Thinking Skills:

23. Demonstrates adaptation and flexibility in the assimilation of new information and techniques. Performs patient demonstrations and clinical evaluations in a timely fashion and at the expected level.

24. Uses reasoning, problem-solving skills and critical thinking when handling simple to complex treatment plans and therapeutic cases.

25. Demonstrates ability to anticipate therapeutic needs for routine and non-routine procedures.
Bergen
Community College
Division of Science and Health
Radiation Therapy Technology Program

STUDENT CONFERENCE FORM

<table>
<thead>
<tr>
<th>Student:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incident date: ____________</td>
<td></td>
</tr>
<tr>
<td>Location:</td>
<td>() Main Campus</td>
</tr>
<tr>
<td>Regarding:</td>
<td>() Academic Issue</td>
</tr>
<tr>
<td>Course:</td>
<td>RTT ____________</td>
</tr>
</tbody>
</table>

Narrative / Description

Student Comments / Action Plan

I have read the above and it has been explained to my satisfaction. I have been advised that it does / does not indicate a severe problem at this time. This form will become part of my permanent record. My signature does not necessarily imply agreement, but documents that the conference occurred as stated above.

Student’s Signature:	Date:
Supervisor’s Signature:	Date:
Program Director:	Date:

Student conference form
BERGEN COMMUNITY COLLEGE
RADIATION THERAPY PROGRAM

OCCUPATIONAL HEALTH AND SAFETY ADMINISTRATION’S STANDARDS
RADIATION SAFETY

Hospital and Department Safety Procedures p. 34
Emergency Telephone Numbers ..p. 35
Infection Control / Standard Precautions p. 35-37
General Student Health and Safety Orientation p. 37-38
Environmental Protection – Toxic and Hazardous Materials p. 39-41
Orientation to Radiation Safety ..p. 42-50
HOSPITAL AND DEPARTMENT SAFETY PROCEDURES

The College is required to follow many codes, standards, and regulations, including those promulgated under the Occupational Safety and Health Administration (OSHA) to protect the safety and health of students.

The intention of OSHA is to ensure, insofar as possible, that every student has safe working conditions for training in Radiation Therapy Technology. Regulations are created by OSHA to ensure safe work conditions.

SAFETY RESPONSIBILITIES OF STUDENTS
All students must understand that it is their responsibility to comply with appropriate safety and health standards as issued by the Hospital and College, their departments and their supervisors. They are to follow safe work practices and report all unsafe conditions to their immediate supervisor.

An orientation of the hospital clinical site and radiation therapy department will provide students with information regarding the location and use of safety equipment including fire extinguishers, exit doors, stairways, and power source circuit breakers. Notify your supervisor when you suspect an emergency situation.

If a student is injured while on the premises of the clinical site, it is the responsibility of the student to immediately report the injury to a clinical supervisor and to the supervisor of the department in which the accident occurred. An incident report form is to be completed by the student and the supervisor at this time. If your condition requires medical attention, the supervisor will send you to the Emergency Room.

Emergency Procedures:

IN CASE OF FIRE:
R – Rescue (Get people out of danger)
A – Alarm (Pull alarm)
C – Confine (Close doors)
E – Extinguish (If possible)

STEPS FOR BLOOD/ BODY FLUID EXPOSURE:
1. Wash Wound Immediately
2. Advise Supervisor
3. Fill out Incident Report
4. Report to Emergency Department

EMERGENCY CODES:
Amber – Child Abduction
Blue – Adult Emergency
Gray – Security Needed
Orange – HAZMAT
Red – Fire
Clear – Situation Cleared
Silver – Hostage / Gun
Triage – Disaster
White – Pediatric Emergency
Yellow – Bomb Threat
10 – Medical Emergency
777 – Evacuation
Emergency Telephone Numbers

Emergency telephone extensions should be posted by the telephone(s) in each clinical area of the radiation therapy department.
The telephone number of the Radiation Therapy Program Director at Bergen Community College is: 201-493-5034.
The telephone number of the Radiation Therapy Program Senior Clinical Supervisor at Bergen Community College is: 201-689-7009 / 973-738-2137 (c)

INFECTION CONTROL / STANDARD PRECAUTIONS

OSHA issued a standard designed to prevent health care (and others) workers from being exposed to bloodborne pathogens such as hepatitis B and HIV.

Occupational Exposure means reasonably anticipated skin, eye, mucous membrane, or parenteral contact with blood or other potentially infectious materials that may result from the performance of an employee's duties.

Other Potentially Infectious Materials means (1) The following human body fluids: semen, vaginal secretions, cerebrospinal fluid, synovial fluid, pleural fluid, pericardial fluid, peritoneal fluid, amniotic fluid, saliva in dental procedures, any body fluid that is visibly contaminated with blood, and all body fluids in situations where it is difficult or impossible to differentiate between body fluids; (2) Any unfixed tissue or organ (other than intact skin) from a human (living or dead); and (3) HIV-containing cell or tissue cultures, organ cultures, and HIV- or HBV-containing culture medium or other solutions; and blood, organs, or other tissues from experimental animals infected with HIV or HBV.

Universal Precautions is an approach to infection control. According to the concept of Universal Precautions, all human blood and certain human body fluids are treated as if known to be infectious for HIV, HBV, and other bloodborne pathogens.

HAND WASHING

Wash hands after touching blood, body fluids, secretions, or excretions.
Wash hands immediately after gloves are removed.
Wash hands between patients.
Wash hands between tasks on the same patient.
Use a plain (nonantimicrobial) soap for routine hand washing.
Use an antimicrobial agent or a waterless antiseptic when directed by infection control.

GLOVES

Clean, nonsterile gloves are adequate for most procedures.
Wear gloves when touching blood, body fluids, secretions, excretions and any contaminated items.
Put on clean gloves just before touching mucous membranes or nonintact skin.
Clinical Manual Section II

Change gloves between tasks and procedures on the same patient. Remove gloves promptly and before touching noncontaminated items, equipment, and environmental surfaces and then immediately wash hands.

MASK, EYE PROTECTION, AND FACE SHIELD

Wear these devices to protect mucous membranes of your eyes, nose, and mouth during procedures likely to generate splashes or sprays of blood, body fluids, secretions or excretions.

GOWN

A clean, nonsterile gown is adequate for most purposes. Wear a gown to protect your skin and to prevent soiling your clothing where splashes or sprays are likely. Select a gown that is appropriate for the amount of fluid likely to be encountered (cloth vs. plastic). Remove a soiled gown promptly.

PATIENT-CARE EQUIPMENT

Handle used equipment in a careful manner to prevent transfer of infection. Properly discard single-use items. Ensure that reusable equipment is not used again until it has been reprocessed.

ENVIRONMENTAL CONTROL

This pertains to routine care, cleaning and disinfection of environmental surfaces such as treatment couches, treatment equipment, and other frequently touched surfaces.

LINEN

Handle, transport, and process used linen soiled with blood, body fluids, secretions, or excretions in a careful manner so as not to spread pathogens.

OCCUPATIONAL HEALTH AND BLOODBORNE PATHOGENS

Take care to prevent injuries when using needles, scalpels, and other sharp or heavy instrument devices. Never recap a used needle, do not manipulate them using both hands, or use any technique that involves directing the point of the needle toward any part of the body. Do use either a one-handed technique or a mechanical device designed for holding the needle sheath. Do not remove used needles from disposable syringes by hand and do not bend, break, or otherwise manipulate used needles by hand.
Clinical Manual Section II

Do place used needles, syringes, and other sharps into puncture-resistant containers, which should be located as close as possible to the area in which such items are used. Use mouthpieces, resuscitation bags, or other ventilation devices as an alternative to mouth-to-mouth resuscitation methods.

PATIENT PLACEMENT

Place a patient who contaminates the environment or who does not (or cannot be expected to) assist in maintaining appropriate hygiene or environmental control in a private room or controlled environment.

DISEASES REQUIRING TRANSMISSION-BASED PRECAUTIONS

<table>
<thead>
<tr>
<th>AIRBORNE PRECAUTIONS</th>
<th>DROPLET PRECAUTIONS</th>
<th>CONTACT PRECAUTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measles</td>
<td>Diphtheria</td>
<td>Multi-drug-resistant bacteria (G.I., respiratory, skin, wound infections)</td>
</tr>
<tr>
<td>Varicella (including Zoster)</td>
<td>Pertussis</td>
<td>Enteric infections (E-coli, shigella, hepatitis A)</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>Pneumonic plague</td>
<td>Highly contagious skin infections (herpes simplex, impetigo, scabies, zoster)</td>
</tr>
<tr>
<td></td>
<td>Mumps</td>
<td>Viral hemorrhagic infection (Ebola, Lassa, and Marburg)</td>
</tr>
<tr>
<td></td>
<td>Rubella</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Influenza</td>
<td></td>
</tr>
</tbody>
</table>

GENERAL STUDENT HEALTH and SAFETY ORIENTATION

One of the regulations passed under OSHA is the Hazard Communication Standard or Right-To-Know Law. This regulation requires that each student be informed of the hazards in their work area and be provided with sufficient training and, if necessary, equipment to minimize or eliminate exposure to the hazardous agent.

Your clinical supervisor must alert you to, and provide guidance with regard to the hazards in your work area.

HAZARDS

Hazards can be placed into three general categories. They are **chemical**, **biological** and **physical** hazards.

Chemicals can cause disease, injury, or fatalities if mishandled. In order for them to have their effect, they must make contact with the body, usually by inhalation, ingestion, injection or contact.

MATERIAL SAFETY DATA SHEETS (MSDS's)

MSDS's are prepared and distributed by manufacturers and distributors of hazardous materials. All chemical manufacturer and distributors must obtain or develop a MSDS for
Clinical Manual Section II

each hazardous material they produce or import. A hazardous material is one that is either a physical hazard (i.e., flammable, oxidizer, etc.) or a health hazard (i.e., causes acute or chronic health effects).

Every clinical site maintains the MSDS file for all hazardous materials used or handled in the workplace. Data sheet documentation must be in compliance with OSHA standards.

MSDS’s are in English and contain the following information:

- The identity of the chemical.
- The physical and chemical characteristics.
- The physical and health hazards.
- Primary routes of entry.
- Exposure limits.
- Precautions for safe handling.
- Controls to limit exposure.
- Emergency and first aid procedures.
- Name of manufacturer or distributor.

MSDS AVAILABILITY

Every clinical site maintains copies of all MSDS's for each hazardous material in the workplace and makes them readily accessible during each workshift to BCC students and faculty when they are in their work area(s). Students and faculty may review the MSDS's for the materials they work with at the time, while they are in their work area. They also may request a copy of an MSDS if they wish. Copies of MSDS's for materials used in each work area are maintained in that work area, during all shifts. Upon request, the National Institute for Occupational Safety and Health (NIOSH) and OSHA have access to the MSDS's.

Biohazards are microorganisms which may cause illness or death in humans. Biohazards can be in the form of bacteria, fungi, viruses and parasites.

A variety of **physical hazards** can be present at the clinical education site. These can cause serious injury or even death. Some common physical hazards are: slips or falls, ergonomic (awkward position of the work or worker), material handling, cuts or punctures, and radioactive materials or radiation devices.

Back injuries, sprains, strains and falls are very common problems in many workplaces. The way to minimize these physical hazards is to follow the work area’s procedures, to pay attention to your surroundings; to have wet floors mopped quickly and to observe the proper working posture for lifting (i.e., use your legs during the lifting process). **SLIPS, FALLS AND BACK INJURIES ARE THE MOST COMMON PROBLEMS AND ARE UNDERESTIMATED BY WORKERS.**
ENVIRONMENTAL PROTECTION – TOXIC AND HAZARDOUS MATERIALS

Personal Protective Equipment is specialized clothing or equipment worn by an employee for protection against a hazard. General work clothes (e.g., uniforms, pants, shirts or blouses) not intended to function as protection against a hazard are not considered to be personal protective equipment.

Metals (Mold Room Shielding Alloy) – Every mold room contains at least three main areas: a hot-wire foam cutter, an alloy melter and a casting plate and block breakout/detailing area.

Mold Room Safety Tips:
- Wear protective clothing
- Wear gloves
- Wear a respirator when filing blocks
- Wear eye protection.
- Leave all of the above protection devices in the mold room
- Check alloy melter temperature daily
- The primary area of concern is the alloy melting unit and the potential for releasing cadmium and/or lead oxide fumes into the room’s atmosphere. The determining factor in the release of metallic oxide fumes is temperature. The higher the temperature, the greater the potential for release of these fumes and an increased chance of personal injury from burns.
- The recommended pouring temperature of alloy is:
 - Low melting 158F / 175 – 185F pouring temperature (alloy of choice)
 - Medium melting 203F / 220 – 225F pouring temperature
- Skim and collect alloy sludge for periodic recycling
- Minimize spills and splashes
- Minimize vigorous filing and sanding of blocks
- Always use a vacuum for cleanups to prevent the dust from becoming airborne – avoid sweeping. A HEPA vacuum should be used. A tacky surface mat, placed at the door of the mold room, collects hazardous dust from shoes to prevent its spread outside of the mold room.
- Do not eat, drink or smoke in the mold room
- Wash face, hands and arms when work is completed
- Confirm working engineering controls.
 - With the mold room door closed, it is recommended that the air in the mold room be exchanges 5 to 6 times per hour through the building’s heating and air conditioning system.
- A sign indicating hazardous materials area – authorized personnel only should be posted on the mold room door
- Confirm the implication of safety procedures

Chemicals (Film Processing) – X-Ray film processing chemical pose no direct hazard to the radiation therapist. All records of disposal or recycling of film processing fixer
solutions containing silver and lead foil backing on x-ray film must be kept on site for three years.

Chemotherapy – Antineoplastic agents derive their name from their ability to halt new growth. They are also known as cytotoxic agents. Despite their use in cancer therapy, several agents are known human carcinogens. Other antineoplastic agents are teratogenic (cause fetal mutation/malformation).

Chemotherapy is not administered in the radiation oncology department, but it is not unusual for a patient to arrive for a radiation treatment procedure while receiving chemotherapy. If a leak or spill should be discovered while the patient is in the radiation therapy department, notify your clinical supervisor immediately. Do not attempt to clean the spill or come in contact with the chemotherapy agent in any way. To prevent further contamination, do not remove the leaky source or patient from the area. Environmental services will be contacted for proper clean-up and disposal. If contact with the agent has already occurred, wash the area immediately with soap and water if possible. Report the incident to your clinical supervisor and the program director. Follow the directions of the clinical supervisor and the protocol of the clinical site. An incident report may be warranted.

Fire is another potential hazard. A fire can occur at any time. Please be aware of the location of all fire alarm pull stations and exits in your clinical site work area. In the event of visible flame or smoke, activate the nearest fire alarm pull station and exit the building.

If, in the course of your day, you hear the fire alarm, please exit the building. Please immediately evacuate via the nearest exit in the event of a bomb threat or gas leak. Never use the elevators during a fire evacuation. The elevators may become smoke filled or may stop between floors due to loss of power. Fire extinguishers are mounted throughout the clinical education site. Make sure you know how to use one before attempting to extinguish a fire.

SOME GENERAL SAFETY AND HEALTH CONSIDERATIONS

1. Observe the signage in the area you are entering. Law requires that entrance doors to certain work areas list the hazard categories that can be found inside.

2. In order for a hazardous agent to affect you, it must somehow interact with your body. Be aware of the common routes of exposure: **INHALATION, INGESTION, INJECTION AND CONTACT**.

3. Read the label of the materials you use.

4. Read the Material Safety Data Sheet (MSDS) for materials you use.
5. **REPORT:**

- HAZARDOUS SPILLS
- FIRES
- ELECTRICAL PROBLEMS
- ODOR OR SMOKE
- CHEMICAL ODOR
- ACCIDENT/INJURY
- UNUSUAL EVENTS

6. Follow standard operating procedures for safe use of hazardous materials. In the mold room these procedures are well defined. For other work areas, consult with your supervisor or a medical physicist.

7. Use personal protective equipment (gloves, goggles, protective clothing) and engineering controls (fume hood, cabinets, fans). When possible, control hazards at the source by providing the appropriate ventilation or by de-energizing equipment.

8. Apply the concepts of Identification, Evaluation and Control when working with potential hazards.

9. Familiarize yourself with the proper emergency response. Washing the affected area for fifteen (15) minutes with a mild soap and water is a general recommendation for removing hazardous materials that have been in contact with the body.

10. Wash your hands regularly while in the clinic, after removing gloves, and especially before eating.

11. Those students observing brachytherapy must follow the guidelines set by the facility and be in compliance with OSHA guidelines.

12. Never pour any chemical down the drain.
ORIENTATION TO RADIATION SAFETY

The Radiation Therapy Program abides by the A.L.A.R.A. principles of radiation safety.

Occupational Radiation Monitoring Devices – Film Badges

Purpose of monitoring of radiation dose received by individual radiation workers:
1. It allows the worker to know how much radiation he or she is receiving.
2. It allows the facility safety officer and administration to determine if certain areas or workers are receiving more radiation than expected.
3. It provides a permanent record of radiation received if questions arise at a later time.

Storage

Radiation badges will be issued on the first day of the program. The radiation badge does not provide protection from radiation; its sole purpose is to measure the amount of radiation to which it is exposed. Radiation badges must be worn at all times during clinical school hours. The student must notify the program director immediately if the badge is lost or forgotten. The student will be given a spare badge until a replacement is obtained. When not in use, badges should be kept in a location in the department free from radiation. Do not take the badges home or leave it in a car. Do not wear it when you are receiving medical tests or treatments, including dental examinations.

Wear your radiation badge between your neck and waste with the clip side of the badge toward your body and fastened so it remains vertical. Wear only the radiation badge with your name on it. The badge is changed quarterly. Return the previous badge promptly each quarter when your new badge is issued.

Exposure Limits

The Nuclear Regulatory Commission (NRC) and the State of New Jersey require individuals to be monitored if an individual’s radiation exposure is expected to exceed ten percent of the annual limits.

The annual limit for an Adult Radiation Worker is 5 rem or 5000 mrem in a year. The annual limit to Any Organ other than the lens of the eye is 50 rem. The Skin and Extremities have an annual dose equivalent limit of 50 rem. The Lens of the Eye has an annual dose limit of 15 rem.

The annual limit for Non-Radiation Workers is 0.5 rem
The annual limit for the General Public is 0.1 rem
Pregnancy

If a female radiation therapy student becomes pregnant, she may voluntarily declare her pregnancy. This is done by notifying the program director in writing of the pregnancy and the estimated date of conception. A private consultation with the radiation safety officer is scheduled to discuss the risks of using ionizing radiation while pregnant and to review exposure history information. All declared pregnancy information is kept confidential.

The choice whether to declare your pregnancy is completely voluntary. If you choose not to declare your pregnancy, you and your embryo/fetus will continue to be subject to the same radiation limits that apply to occupational workers.

Dose to the embryo/fetus during the entire pregnancy, due to occupational exposure of the declared pregnant worker, must not exceed 0.5 rem (500 mrem or 5 mSv). Once a pregnancy becomes known, exposure of the embryo-fetus shall be no greater than 0.05 rem (50 mrem or 0.5 mSv) in any month (excluding medical exposure).

These limits can only be enforced if the pregnancy is declared. Following declaration of pregnancy, a second dosimeter will be offered to be worn at the waist / gonadal area. This dosimeter will be used to provide an estimate of the dose to the embryo/fetus.

The Radiation Therapy Program abides by the NRC regulations regarding the declared pregnant student (worker) and fetal exposure. In the event of a declared pregnancy, the program director will place the pregnant student in a work area having a low probability of personal exposure, if this is administratively possible without unduly disrupting clinical rotation schedules or achievement of clinical objectives. The other alternative is for the student to take a leave of absence and return after the birth to start at the beginning of the term where she left. Credit will be given for all completed courses and clinical rotations. The Program Director and Radiation Safety Officer will assist the declared pregnant woman with making an informed decision by providing information regarding the risks of radiation exposure in the radiation oncology department.

Accidental Exposure

Emergency – Off Procedures

Only the patient is allowed in the treatment room, when the machine is on. In the event that another person is accidentally left in the room or there is a malfunction in the treatment machine, emergency push buttons are located at several points within the room and on the machine itself. They remove all power to the unit when pressed. Circuit breakers, located outside of the treatment room remove all power to the treatment room area, including the treatment machine.

The machine will not be energized when the buttons are released unless the therapist proceeds through the normal start procedures at the control panel.
Safety devices and emergency-off buttons must be tested frequently and in accordance with manufactures and regulatory agency recommendations.

Reporting and Documenting an Emergency

Notify the Clinical Supervisor and Program Director if you suspect an overexposure or have been inadvertently exposed. The Radiation Safety Officer of the college and the Radiation Safety Officer of the clinical site will be notified. Notify the program director if the badge is accidentally contaminated, exposed to excessive heat or is exposed during a radiation oncology procedure. Radiation safety will be notified and a replacement badge may need to be furnished. An incident report form may be needed for documentation.

All badges are sent out for processing and upon receipt of the badge results, the Radiation Therapy Program Coordinator performs a review to ensure results are within acceptable limits and/or determine if any investigations are required. Following this review, a copy of any questionable results is forwarded to the Radiation Therapy Radiation Safety Officer for review. The results are maintained permanently by the Radiation Therapy Program.

The lowest reading for a whole badge is 10 mrem, results less than this are reported as 0 for minimal. At 125 mrem/quarter (ALARA level 1) and 375 mrem/quarter (ALARA level 2) results are considered investigational and will be reviewed in accordance with state regulations. At greater than 1250 mrem/quarter, notification of the NJDH and the NRC may be required in addition to an investigation and review.

Radiation Safety Concepts

A.L.A.R.A. – To keep exposure to ionizing radiation **As Low As Reasonably Achievable.**

Lowering radiation received lowers any risk of adverse effects.

Measures should be taken, whenever possible, to reduce individual exposure well below regulatory limits.

The three basic ways of keeping radiation exposure low are:

- **TIME** – Amount of time of exposure to radiation
- **DISTANCE** - The distance from the radiation source
- **SHIELDING** – Shielding oneself from the source.

Procedures must be used to ensure that patients undergoing radiation treatment receive only that dose prescribed by the Radiation Oncologist and a minimum exposure elsewhere.

Although the radiation exposure from a simulator is small compared to a therapeutic dose, it is still good practice to minimize the exposure from unnecessary x-rays.
Ensure that the correct factors are used and that the film processor is operating correctly.

Time

The less time one is exposed to radiation, the less dose is acquired. In a radiation therapy department, there is little opportunity to use this method of radiation protection since all personnel are outside the linear accelerator treatment room when the therapy machine is on. The time spent near brachytherapy patients should be minimized since they emit radiation after the sources have been implanted. In a simulation procedure, fluoroscopy exposure should be kept to a minimum.

Distance

This method only applies to brachytherapy patients and cobalt-60 units since all personnel is outside the linear accelerator treatment room during operation. When exposed to a radioactive source, the inverse square law applies: doubling the distance from the source reduces the exposure to one fourth its original level.

Shielding

Shielding is the most important method for protection of operators and members of the general public in the radiation therapy department. In a radiotherapy simulator procedure, the collimator must be set as small as possible so as to avoid irradiating larger fields than necessary. External beam therapy units produce radiation beams of high energy and the shielding that is required is greater than conventional X-Ray units. The choice of shielding material depends on the energy of the beam. Where lead is primarily used for superficial units, iron, concrete, steel and lead are used at higher energies where Compton interactions dominate. Since these materials attenuate radiation equally, the choice is usually based on economic and space factors. For new construction, concrete is usually the material of choice because of its low cost.

Factors that influence radiation shielding:

(W) Workload of the machine and patients treated per week.

(U) Primary beam use factor – The amount of time that the beam is aimed at the floor, ceiling or a particular wall.

(T) Time that the area adjacent to the treatment room will be occupied.

(D) Distance from the source of radiation to the occupied area.

(P) Dose limit for the occupied area.

Radioactivity

The role of regulatory agencies is to license users of radioactive materials and radiation-producing equipment, inspect such users and enforce the appropriate laws. One of the leading federal regulatory agencies in the U.S. is the NRC (Nuclear Regulatory Commission), which oversees the use of isotopes produced in nuclear reactors. In the
Radiation therapy department, these sources are used for both teletherapy and brachytherapy sources. The use of machines that produce ionizing radiation, such as linear accelerators, fall under the jurisdiction of the Food and Drug Administration (FDA) and state agencies.

The NRC and state regulators have additional regulations designed to protect both the operator of the equipment and the patient:

Warning Signs – Entrance doors to the therapy rooms must be posted with a sign that says: “CAUTION, HIGH RADIATION AREA” because the radiation levels can exceed 1mSv (100 rems) in 1 hour. When radiation levels may exceed 5gy (500cGy) in 1 hour the sign should read “GRAVE DANGER, VERY HIGH RADIATION AREA”. This is not typically seen in a medical facility.

Warning Lights – Beam on indicators are required on the control panel at the entrance door and on the treatment unit itself. These lights should be illuminated whenever the therapy unit is on.

Door Interlocks - Entrance doors to therapy rooms must be equipped with an interlock that will shut off the machine if the door is opened during treatment. The machine will not produce radiation when the door is closed unless the operator deliberately turns it on.

Visual and Auditory Communication – It is necessary for the radiation therapist to be able to see and hear the patient throughout the treatment. This is accomplished with television monitors and an intercom system located at the control console area outside of the treatment room.

“Beam On” Monitors – High energy therapy units are required to have an independent beam-on monitor in the room to alert the therapist if he/she enters the room when the beam is on.

Radioactive Materials –
Unlike x-ray machines that produce radiation when turned on, radioactive materials are always giving off radiation and, therefore, must be kept in a lead lined container when not in use. Some examples of radioactive materials that are used in Nuclear Medicine and Radiation Oncology are: Cesium, Iodine, Thallium and Strontium.

Brachytherapy – Sources for implants are always emitting radiation. A license from either the NRC or the state is required to receive, possess and use such sources. Sources are stored in a heavily shielded safe in an area secure from theft or loss.

Written Directives and Inventories – Before the implant is prepared, a written directive must be completed by the requesting physician and a careful inventory must be maintained.
Transportation – Sources must be transported in shielded carriers.

Patient Rooms – The patient is placed in a private room. Care must be taken so that the patient’s bed is placed so as not to expose the patient in the adjoining room.

Training Personnel – Instruction in radiation safety; Nurses should wear personnel monitors.

Warning Signs and Surveys – The entrance door to the patient’s room must be posted with a caution sign. Visiting periods should be limited to 20 minutes per visitor per day. Visitors should keep a safe distance from the patient as established by the Radiation Safety Officer. Radiation warning signs are to be placed on patient’s wrist, bed and chart. After removal of the implant, a survey needs to be done.

Leak Test – Brachytherapy sources must be leak tested in intervals not to exceed 6 months.

Low Dose Rate Brachytherapy – Requires the patient to be hospitalized 24 to 72 hours.

High Dose Rate Brachytherapy – Greater radiation activity decreases the treatment time. These are done on an outpatient basis, and, since they are computer controlled, there is less exposure to the preparer. The sources, Iridium 192 and Cesium 137 cannot be handled manually. Potential problems include error or loss of control of the source.

Radioactive Drugs – Upon injection into the patient, certain radioactive pharmaceuticals settle into certain body organs. A gamma camera in Nuclear Medicine senses the radiation in the organ, allowing it to be recorded on film. The uptake of the radioactive pharmaceutical may indicate pathology and provide the doctor with information for a diagnosis. Some tests that use radiation in this way are bone scans and heart scans. Thyroid disease may be treated using a type of radioactive pharmaceutical.

Sealed Sources – Some sealed sources of radiation may be put into a body cavity as a treatment. Examples of this are cesium implants, which is used for some gynecological (female) cancers, and palladium or iodine “seeds” for treating prostate cancer in men.

Handling and Disposal

Brachytherapy patients – In general there is radioactive contamination problems with brachytherapy patients, and therefore the only hazards arise from the radiation emitted by the sources and the potential hazard of sources becoming displaced from the tissue. Removal will be carried out by a member of the Radiation Oncology Department who will advise staff of any special precautions at the time of removal.
Patients with permanent implants will only be permitted to leave the hospital once the activity of the radioisotope has decreased to a level which is internationally recognized as safe.

Accidental contamination procedures

There are three major causes of spillage of liquid radioactive material:

1. Spillage from a source container
2. Leakage from an injection procedure
3. From patient excretion such as urine, feces, sweat, saliva and vomit

Any spill has a level of danger and all accidents involving radioactive material will be reported to the clinical site Radiation Safety Officer as well as the program director. In cases where personal injury is involved, such as a scratch on the skin where radioactive material may enter the person’s body, an incident report form must be completed.

The following procedure should be followed on discovery of a radioactive material contamination problem:

All persons involved in the incident are to vacate the immediate vicinity but are not to move freely around the department, as this involves a danger of spreading contamination.

IMMEDIATELY notify the clinical supervisor and the Radiation Safety Officer.

If the contamination is due to a container spill of liquid and the hands are protected with gloves, right the container, and ensure that it is adequately shielded. If the problem is due to a leaky syringe or other container, place suspect item in a plastic bag and remove it to the Hot Lab, if possible.

Follow the directions of the Radiation Safety Officer and the protocol of the clinical site.

Pregnant Patient

The Radiation Oncologist will inform the patient of the risks of radiation treatment during pregnancy. The radiation therapist will deliver the radiation dose in accordance with the prescription and safety requirements established by the Radiation Oncologist, Radiation Safety Officer and physics staff.
Information on Radiation Monitoring Badges

A film badge is a device used to measure the radiation exposure that a person receives during clinical hours. It is to be worn at every clinical site.

Film badges are distributed quarterly and are to be exchanged for the previous quarter’s badge immediately upon receipt. The old badges must be returned to this college clinical supervisor immediately in order to avoid further exposure.

Radiation badges must be worn at all times that a student is on the clinical site premises. They must not be left in such areas as simulation rooms, treatment rooms, console areas, or in areas immediately adjacent to the walls of the above rooms.

Film badges are to be worn at lapel level with the side which is open on the badge holder forward. Badges are not to be worn inside pockets or under the lapel so that the side or back of the holder is exposed to radiation. If ever a lead apron is worn, the badge is to be worn outside the apron to estimate maximum exposure.

Any individual who is concerned about exposure to other organs, may request the assistance of the Radiation Therapy Program Director in determining if additional monitoring is necessary.

If exposure to hands or fingers is of concern, please notify the Radiation Therapy Program Director to determine if a ring badge will be supplied.

In case the radiation badge is damaged or exposed accidentally to radiation not received by the person, the Radiation Therapy Program Director must be notified immediately. This badge must be returned to the Radiation Therapy Program Director. A replacement badge will be issued.

The badge records are maintained in a locked file cabinet in the Radiation Therapy office. Any individual who receives a badge exposure exceeding 375 millirems in any quarter will be notified. The circumstances will be investigated by the program and the RSO of the clinical site and the report of such investigation will be kept on file.

Late badges and non-returned badges are considered a regulatory non-compliance violation and may result in unfavorable disciplinary action. You must return all the radiation monitors, not only to comply with regulatory guidelines and commitments but in order for the BCC Radiation Therapy Program to receive credit for the chips and filter components that are removed for recycling.

Students whose badge readings are within normal limits will be informed of their most recent exposure readings upon request.
Radiation Overdose Policy

Appropriate radiation monitors (dosimeters) are provided for all students of the radiation therapy program. Exposure reports are reviewed by the BCC Radiation Safety Officer and the Radiation Therapy Program director. They are maintained in the director's office and all students are routinely informed of their most recent exposure readings. Any incidence of overdose that warrants investigation shall be recorded and maintained on the incidence report form and kept in the program directors office.

In accordance with our ALARA program, the following investigational levels have been established:

A. Whole Body:
 Level I - 125 mrem
 Level II - 375 mrem

B. Skin:
 Level I - 1250 mrem
 Level II - 3750 mrem

C. Extremities:
 Level I - 1250 mrem
 Level II - 3750 mrem

D. Lens of Eye:
 Level I - 375 mrem
 Level II - 1125 mrem

These levels are based on quarterly reports.

Any exposure above ALARA Level I will be documented verbally.
Any exposure above ALARA Level II will be documented in writing.
Any exposure exceeding these levels will be reported to the NJDEP in compliance with section 7:28-13.2.