Bergen Community College Computer Science Department Course Syllabus

instructor:		Pnone:	
Email:		Office Hours	
Course Title:	CIS-288 Discrete Mathematics for Computer Science		
Prerequisites:	CIS-265 or CIS-266		
Credits/Hours:	4 Credits	4 Lecture	
Gen'l Ed. Course:	No		

Course Description:

Discrete Mathematics for Computer Science is a study of the mathematical theory and techniques that underlie computer science. Topics considered include set theory; matrices; induction; counting techniques; relations; functions; recurrence relations; graphs and trees; Boolean algebra and circuits; grammars and languages; and an introduction to automata theory. Applications of these topics in computer science are included in the course.

Student Learning Outcomes: Upon completion of the course, the student will:

- 1. know the fundamental concepts of set theory, logic, induction, matrices, and combinatorics, and be able to apply them to the solution of problems related to computer science:
- 2. understand the fundamental concepts of relations, functions, and recurrence relations as they relate to applications in computer science;
- 3. be able to solve first and second order recurrence relations and use mathematical induction to verify solution:
- 4. know the fundamental properties and structure of graphs, networks, and trees, and be able to use this knowledge to solve problems that relate to computer science;
- 5. know the properties of Boolean algebras and be able to use them in the analysis and design of computer logic circuits;
- 6. understand the fundamental concepts of phrase structure grammars and programming languages.
- 7. be able to represent finite-state machines using state transition tables and state transition diagrams;
- 8. be able to apply the technique of machine minimization to improve the efficiency of a design

Student Learning Outcomes Assessment Measurement:

Each of the above listed student learning outcomes will be assessed by: (1) written assignments and/or quizzes; (2) written examinations and a comprehensive final exam.

Course grade: see the grading policy for the course.

Textbook: Mathematical Structures for Computer Science, Judith Gersting, W.H. Freeman and Company

Sixth Edition ©2007 ISBN-10: 0-7167-6864-XISBN-13: 978-0-7167-6864-7

Course Content:

1. Mathematical Preliminaries

- set theory
- computer representation of a finite set
- counting techniques
- matrix theory

2. Proof Techniques

- propositions and theorems
- disproof by counterexample
- · exhaustive proof
- direct proof
- proof by contraposition
- proofs using the Principle of Mathematical Induction

3. Relations and Functions

- binary relations: set builder, matrix, and digraph representation
- properties of relations
- · equivalence relations and partitions
- partial orders, Hasse Diagrams, and topological sort
- operations on relations
- functions: properties and operations
- · order of magnitude of functions

4. Recurrence Relations

- · examples of recurrence relations
- classifying recurrence relations
- solving first-order recurrence relations by iteration
- verifying a solution using mathematical induction
- solving second-order linear homogeneous recurrence relations
- applications and computer implementation

5. Graphs, Networks, and Trees

- · fundamental terminology of graphs and trees
- computer representation of graphs and trees
- · depth-first and breadth-first search
- spanning trees and Prim's algorithm
- PERT / CPM techniques in systems analysis
- · decision trees and Huffman codes
- Dijkstra's shortest path algorithm

6. Boolean Algebras and Computer Logic

- Boolean vectors, Boolean functions, and switching tables
- Boolean operators and Boolean expressions
- properties of a Boolean algebra
- disjunctive normal form
- minimization of Boolean expressions using properties
- minimization of Boolean expressions using Karnaugh maps
- applications: decision making constructs
- applications: combinatorial circuits

7. Grammars and Languages

- specification of a programming language
- phrase structure grammars

- language generated by a grammar
- parsing and parse trees
- classification of grammars and languages
- Backus-Naur form
- syntax diagrams
- applications

8. Finite-State Machines

- components of a finite-state machine
- state transition functions, tables, and diagrams
- application: binary adder

9. Finite-State Automata

- finite state automata and recognition
- relationships between languages and finite automata
- machine minimization
- software simulation of a finite state automaton

References

Epp, Discrete Mathematics with Applications, PWS

Johnsonbaugh, Discrete Mathematics, Prentice-Hall

[8/2012]