Bergen Community College Division of Mathematics, Science and Technology Department of Physical Sciences

Master Course Syllabus CHM 260 Organic Chemistry I

Semester and year: Course Number: Meeting Times and Locations: Instructor: Office Location: Phone: Office Hours: Email Address:

COURSE DESCRIPTION: Organic Chemistry I is a study of the fundamental classes of organic compounds, with emphasis on the relationship of structure and reactivity. Electronic theory, energy relationships, stereochemistry, and reaction mechanisms are used to explain reactivity. Molecular modeling is emphasized, particularly with respect to electrostatic potential maps. Practical applications, including syntheses, are studied and carried out in the laboratory. Instrumentation such as IR, NMR, and GC/MS are routinely used as qualitative and quantitative tools.

<u>CREDITS/HOURS:</u> 4 credits/ 6 hours <u>PREREQUISITES:</u> CHM-240 and CHM-241 <u>GENERAL EDUCATION COURSE:</u> No

<u>TEXTBOOK</u>: Organic Chemistry, 3rd Edition; D. Klein; John Wiley & Sons, New Jersey, 2017.

LABORATORY MANUAL: Laboratory Manual for Organic Chemistry I, CHM 260 BCC, Signature Series, Cengage Learning, ISBN is 13: 9781285223339 or ISBN 10: 1285223330

MOLECULAR MODEL SET: Darling Molecular Model Set, or other similar model set for Organic chemistry

COURSE CONTENT (Lecture):

- 1. A Review of General Chemistry: Electrons, Bonds, and Molecular Properties.
- 2. Molecular Representations.
- 3. Acids and Bases.
- 4. Alkanes and cycloalkanes.
- 5. Stereoisomerism.
- 6. Chemical reactivity and Mechanisms
- 7. Alkyl halides: Nucleophilic Substitution and Elimination Reactions
- 8. Addition Reactions of Alkenes
- 9. Alkynes
- 10. Radical Reactions
- 11. Synthesis
- 12. Alcohols and Phenols
- 13. Ethers and Epoxides; Thiols and Sulfides
- 14. Infrared Spectroscopy and Mass Spectrometry

COURSE CONTENT (Laboratory):

Chemistry laboratory safety Chemistry laboratory small scale techniques Use of a variety of sophisticated instrumentation (IR, GC/MS, refractometer) Experiments that emphasize the topics contained in the lecture. A detailed list of experiments is found on the last page of this syllabus Laboratory report writing Molecular modeling

Class	Lecture Time Slot
1.	Chapter 1
2.	Chapter 1
3.	Chapter 2
4.	Chapter 2-3
5.	Chapter 3-4
6.	Chapter 4
7.	Unit Exam 1 on Chapters 1-4
8.	Chapter 5
9.	Chapter 5
10.	Chapter 6
11.	Chapter 6
12.	Chapter 7
13.	Chapter 7
14.	Unit Exam 2 on Chapters 5-7
15.	Chapter 8
16.	Chapter 8
17.	Chapter 9
18.	Chapter 9
19.	Chapter 10
20.	Chapter 10
21.	Chapter 10
22.	Unit Exam 3 on Chapters 8-10
23.	Chapter 11
24.	Chapter 11-12
25.	Chapter 12
26.	Chapter 12-13
27.	Chapter 13-14
28.	Chapter 14
29.	Unit Exam 4 on Chapters 11-14
30.	Final Exam (Comprehensive)

<u>SAMPLE</u> LECTURE AND EXAMINATION SCHEDULE:*</u>

*A three or four exam schedule may be adopted at the discretion of the instructor.

<u>SAMPLE LABORATORY SCHEDULE:*</u>

Class	Lab Time Slot	Title	Duration
1.	Misc 0213	Chemical Literature	1 Week
2.	Tech 0701	Measuring Melting Points of Compounds &	1 Week
		Mixtures	
3.	Tech 0703	Purifying Acetanilide by Recrystallization	1 Week
4.	Tech 0704	Separating by Distillation	1 Week
5.	Modl 2003	Introduction to Molecular Modeling	1 Week
6.	Reac 0714	Studying Nucleophilic Substitution reactions	1/2 Weeks
7.	Synt 0740	Preparing Ethanol by Fermentation	1 ¹ / ₂ Weeks
8.	Tech 2096	Isolation of Caffeine	2 Weeks
9.	Synt 0746	Acetaminophen	2 Weeks
10.	Reac 0712	Dehydrating Cyclohexanol	1 Week
11.	Tech 2157	Isopentyl Acetate	2 Weeks
12.	Synt 0745	Synthesizing Aspirin	1 Week

* Faculty should schedule no fewer than 14 weeks of laboratory work from the list of laboratory experiments above.

<u>SAMPLE</u> GRADING POLICY:*

Option A**	
Unit Examinations (all 4)	57.1%
Final Examinations (Comprehensive)	14.3%
Laboratory Assignments	28.6%
Option B***	
Unit Examinations (Best 3 out of 4)	42.8%
Final Examinations (Comprehensive)	28.6%
Laboratory Assignments	28.6%

*A three or four exam schedule may be adopted at the discretion of the instructor.

**Grade Option A is used when the Final Examination is the lowest grade and all four Unit Examination are taken.

***Grade Option B is used when a student fails to take a Unit Examination for any reason or if a Unit Examination is the lowest grade. Then that Unit Examination is then dropped from the final grade. THERE ARE NO MAKE UP EXAMINATIONS.

Laboratory Experiment Grade:	
11 Labs Session @ 18 Points each	198
On time Assignments	002
Total	200

THERE ARE NO MAKEUP LABORATORIES.

Lab or Examination Score Point Value Letter Grade	e
100–90 4.0 A (90 i	is always an A)
90 – 85 3.5 B+ (85 i	is always a B+)
85 – 80 3.0 B (80 i	is always a B)
80 – 75 2.5 C+ (75 i	is always a C+)
75 – 70 2.0 C (70 i	is always a C)
70–60 1.0 D (60 i	is always a D)
60–0 0.0 F	

- 1. There will be no make-up exams or labs. Any labs or exams missed will be assigned a grade of zero.
- 2. Any student caught cheating (including using unauthorized formula sheets of any kind) will receive a grade of zero on that particular examination or lab. That zero cannot be replaced by any other examination grade or extra work. Students should read the Bergen Community College Statement on Academic Integrity as found in the college catalog
- 3. Written lab reports are required. The specific format to follow will be determined by the individual instructor. Students will be required to keep a lab notebook. Laboratory reports in format discussed in the lab are due one week after the completion of the experiment. Late lab reports (up to one week only) will only receive a grade of 50% of the earned score.
- 4. In order to receive a passing grade in CHM-260 a student <u>must</u> obtain a passing grade in both the lecture and laboratory parts of this course.
- 5. Instructors may make small modifications to the grading policy and/or grading scheme.

OBJECTIVES: Upon successful	MEANS OF ASSESSMENT: This outcome will be
completion, the student will be able to:	measured by one or more of the following:
1. Assess the reactivity of molecules using structure, bonding, and stereochemistry.	1. Assessment will be based on appropriate exam and quiz questions, explanation of the results of laboratory experiments, molecular modeling, and homework questions from the text and from the instructor's problem sheets.
2. Explain the outcome of a reaction using reaction mechanisms.	2. Assessment will be based on appropriate exam and quiz questions, explanation of the results of laboratory experiments, molecular modeling, and homework questions from the text and from the instructor's problem sheets.
3. Describe the reactions of alkanes, alkenes, and alkynes.	3. Assessment will be based on appropriate exam and quiz questions, explanation of the results of laboratory experiments, and homework questions from the text and
 4. Use spectroscopy to determine the structure of organic molecules. 5. Use important laboratory techniques to 	 from the instructor's problem sheets. 4. Assessment will be based on appropriate exam and quiz questions, and explanation of the results of laboratory experiments. Compounds synthesized in the laboratory will be routinely characterized by the student using IR spectroscopy and GC/MS. 5. Students will be evaluated by instructor observation of
purify and characterize organic compounds.	how well the student performs distillation, crystallization, and other laboratory techniques in the laboratory.

STUDENT LEARNING OBJECTIVES & ASSESSMENT MEASURES:

		5
6. Employ molecular modeling to study	6. Students w	ill be evaluated by the instructor in their
energy relationships between molecules of	use of molecu	lar modeling (Spartan) software and by
similar structure.	their explanat	ion of results in lab reports.
7. Use electrostatic potential maps to	7. Students w	ill be evaluated by the instructor in their
emphasize the electrophilic/nucleophilic	use of molecu	lar modeling (Spartan) software and by
character of functional groups. their explanation of results in lab reports.		
8. Demonstrate proficiency in using available		8. Students will also be evaluated through
instrumentation in laboratory experiments. Stud	strumentation in laboratory experiments. Students will be the grading of their laboratory reports.	
evaluated by the instructor in the laboratory in	their use of	
TLC, GC/MS, UV and IR instrumentation.		
9. Write laboratory reports that conform to	9. Students	will be evaluated by the quality of their
accepted technical writing protocols. laboratory reports.		ports.
10. Students will learn to practice critical 10. Students will be evaluated by observation in the		
thinking skills and apply them to both material	hinking skills and apply them to both material laboratory and analysis of experimental results.	
presented in lecture and the analysis of data	Assessment	will also be based upon performance on
generated in the lab.	exam questic	ons.

At the discretion of the instructor, assessment measures may be somewhat modified.

SUPPLEMENTARY READINGS / MATERIALS:

- 1. <u>Organic Chemistry, Structure and Function;</u> K. Peter C. Vollhart and Neil Schore; 6th Edition; W.H. Freeman & Company; New York, 2016.
- 2. <u>A Microscale Approach to Organic Laboratory Techniques</u> 5th Edition; Donald L. Pavia, Gary M. Lampman, George S. Kriz, Randall G. Engel; Brooks/Cole, CA, 2013
- <u>Macroscale and Microscale Organic Experiments</u>, 7th Edition; Kenneth L. Williamson, Robert Minard and Katherine M. Masters; Houghton Mifflin Company; New York, 2017 (expected).
- 4. <u>Spectrometric Identification of Organic Compounds</u>, 8th edition, Robert M. Silverstein, Francis X. Webster, David Kiemle; David L. Bryce; John Wiley and Sons; New York, 2015.
- 5. Organic Chemistry, 9th edition; Leroy Wade; Jan Williams Simek; Pearson, IL, 2017
- 6. <u>Organic Chemistry 9</u>th edition; John McMurry; Cengage Learning; Boston, 2016
- 7. Organic Chemistry 8th edition; Paula Yurkanis Bruice; Pearson NJ; 2016

OTHER REQUIREMENTS:

- A scientific calculator is required. Cell phones cannot be used for calculations during examinations.
- Safety glasses or goggles are available in the laboratory and must be worn at all times in lab. A student is free to purchase their own pair of safety glasses or goggles for personal use.

ATTENDANCE/LATENESS POLICY:

All students are expected to attend punctually every scheduled meeting of each course in which they are registered. If a student is absent, s/he is responsible for learning the material covered, including homework assignments and any handouts. Small study groups to review lecture and homework material are usually found to be helpful. Attendance and lateness policies and sanctions are to be determined by the instructor for each section of each course. These will be established in writing on the individual course outline. Attendance will be kept by the instructor for administrative and counseling purposes.

OTHER POLICIES:

Electronic Devices: The use of portable electronic devices such as pagers and cell phones is not permitted while class is in session. Please silence these devices before entering class.

STUDENT AND FACULTY SUPPORT SERVICES:

- 1. Students experiencing difficulty with the arithmetic or problem solving aspects of this course should acquaint themselves with the services of the Tutoring Center and Smarthinking.
- 2. The BCC Library provides extensive support services for student research.
- 3. Faculty office hours may be a productive vehicle for assistance in understanding the course material.
- 4. Bergen Community College aims to create inclusive learning environments where all students have maximum opportunities for success. Any student who feels he or she may need an accommodation based on the impact of a disability should contact the Office of Specialized Services at 201-612-5269 or via email at ossinfo@bergen.edu for assistance.

FACULTY ABSENCE PROCEDURE:

A daily listing of cancelled classes will appear in a glass case near the main corridor on the first floor. Another such listing will appear in a glass case in Ender Hall. Students can consult these cases before going to class. If students find a class cancelled which has not been listed, they should report this to the Divisional Dean's Office, A304, or the Evening Office C107. A listing of a faculty member's absence is available on line.

	BCC Gen Ed Goals	
Gen Ed Goals	CHM 260 Organic Chemistry I	Student Learning Objective
1. Scientific Knowledge &	z Reasoning	1,2,3, 10
2. Society & Human Beha	vior	
3. Humanistic Prospective		
4. Historical Prospective		
5. Quantitative Knowledg	e and Skills	6,7,10
6. Written & Oral Commu	inications	9
7. Technological Compete	ency	4,5,8
8. Information Literacy		9
9. Global & Cultural Awa	reness	9
10. Ethical Prospective		

		CHM 260 LAB TENTATIV	E SCHEDULE	
WEEK	NUMBER	EXPERIMENT	Techniques	STUDENT LEARNING OBJECTIVES
1.	Misc 0213	Chemical Literature	Research Techniques	5
			Writing lab reports	9
2.	Tech 0701	Measuring the Melting Points of Compounds & Mixtures	Use of Mp Apparatus	5
3.	Tech 0703	Purification of Acetanilide by Recrystallization Use Small Scale	Solubility Decolorization Gravity Filtration Recrystallization	5
			Vacuum Filtration Use of Mp Apparatus	
4.	Tech 0704	Separation Cyclohexane & Toluene by Distillation Use 1/2 of Macroscale	Simple Distillation Fractional Distillation	5
5.	Modl 2003	An Introduction to Molecular Modeling	Conformations of n-Butane Substituted on alkenes Cis & trans relative energies	1,6,7
6.	Reac 0714 Synt 0740	Sn1 & Sn2 Reaction Preparing Ethanol from Fermentation Use Semimicro	(Rate Study Only) Setup Fermentation	1,2,3
7.	Synt 0740	Preparing Ethanol from Fermentation Use Semimicro	Vacuum Filtration Simple Distillation	5

	-			7
			Fractional Distillation	
			Density measurement	
8.	Tech 2096	Caffeine Isolation of an Alkaloid	Hot Water Extraction	5
		Use Small Scale	Vacuum Filtration	
			Extraction	
9.	Tech 2096	Caffeine Isolation of an Alkaloid	Evaporation of solvent	5
		Use Small Scale	Sublimation	
			% Yield	
10.	Synt 0746	Acetaminophen	Reflux	5
		Use Semimicro x2	Vacuum Filtration	
			Recrystallization	
11.	Synt 0746	Acetaminophen	Мр	4, 8
		Use Semimicro x2	TLC	
			IR Spectroscopy	
		Thanksgiving Bre	eak	
12.	Reac 0712	Dehydrating Cyclohexanol	Distillation	4, 5, 8
		Use 2 x Semimicro	Drying Agents	
			Wet Tests	
			IR	
			Refractometer	
13.	Tech 2157	Isopentyl Acetate	Mix & Reflux	5
		(Synthesis of Banana Oil)	Extraction	
		Use 2 x Semimicro	Dry	
14.	Tech 2157	Isopentyl Acetate	Distillation	4, 5, 8
		(Synthesis of Banana Oil)	IR	
		Use 2 x Semimicro	Вр	
15.		Make Ups / Check out		
Hold	Synt 0705	Synthesis of Aspirin	Reflux	5
		Use 2 x Semimicro	Vacuum Filtration	
			MP	
			FeCl₃ Test	

All BCC students enrolled in credit courses are entitled to a WebAdvisor account. With WebAdvisor, you may register online, pay your bill, check your schedule, room assignments, GPA, and find out what courses you need to take. To find out more about WebAdvisor or to sign up online, visit <<u>http://go.bergen.edu></u>! While there, please make sure you give us your preferred email address. You'll find directions how to do this at <<u>http://go.bergen.edu/email></u>.

5/18