Bergen Community College Division of Mathematics, Science and Technology Department of Physical Sciences

Course Syllabus PHY 185 Introduction to Physics

Semester and year: Course Number: Meeting Times and Locations:

Instructor: Office Location: Phone: Office Hours: Email Address:

COURSE TITLE: PHY 185 Introduction to Physics

CREDITS/HOURS: 3 hr lecture, 3 hr lab, 4 credits

PREREQUISITES: None

COURSE DESCRIPTION: Introduction to Physics covers a series of topics selected from the following: Newton's Laws of Motion, mechanical energy, work and power, heat and heat transfer, electricity and magnetism, light, sound, atomic structure, and radioactivity. Conceptual principles are emphasized without dwelling on the rigorous mathematical aspects of the topics studied. Application of principles to environmental and health problems is included.

This is a General Education course.

TEXTBOOK:Hewitt, Paul G., 2015: Conceptual Physics, 12th Edition. Pearson,
Glenview IL. 722 pp. ISBN-13 978-0-321-9010-7

Opstbaum, Roger, 2001: <u>Intro to Physics Notes</u>, Kendall/Hunt, 147 pp including labs.

LAB MANUAL: Wilson, Jerry D., and Cecilia A. Hernandez-Hall, 2005 Physics Laboratory Experiments for PHY-185 Custom 6th Edition, Cengage Learning, Mason, OH, ISBN 13: 978-0-618-58767-4.

STUDENT LEARNING OBJECTIVES The student will be able to:

- 1. Identify how the all-encompassing science of Physics impacts our everyday lives.
- 2. Develop a Physics vocabulary
- 3. Explain the background to look into our present and future ways of acquiring and utilizing energy.
- 4. Use the scientific method
- 5. Define speed, velocity, and acceleration
- 6. Explain the acceleration due to gravity and its consequences
- 7. Define the difference between mass and weight
- 8. State and give examples of Newton's 3 laws
- 9. Identify scalers and vectors
- 10.Define momentum and its conservation
- 11.Define work and energy
- 12. Identify conservation of energy
- 13. Identify the difference between torques and forces
- 14.Explain rotational motion

- 15.Explain the nature of the law of gravity
- 16.Explain how tides work
- 17.Explain projectile and satellite motion
- 18.Explain the atomic nature of matter
- 19. Identify the physical differences between solids, liquids and gases
- 20. Identify the difference between temperature and heat
- 21.State the laws of thermodynamics
- 22.Explain the fundamentals of wave physics
- 23.Identify how sound waves are generated
- 24.Explain the fundamentals and applications of electricity and magnetism
- 25.Demonstrate how electricity is sent from the power station to your home
- 26.Explain the basics of light and electromagnetic radiation
- 27.Explain the basics of quantum theory 28.Explain the basics of radioactivity, fission and fusion
- 29.Explain the basics of Einstein's special theory of relativity
- ASSESSMENT: Student achievement of the above objectives will be assessed by their performance on tests and their laboratory reports.

TESTS:

1. There will be (four) modular exams 2. Your individual instructor will advise you how tests are composed, verbally, or under separate cover. There will be at least one essay on an exam.

TEST STRUCTURE: There will be 4 (four) modular exams consisting of:

10 True-False (20 pts.) I. 10 Multiple Choice (20 pts.) II. III. 7 Fill-ins (14 pts.) 1 Diagram (6 pts.) TV. v. 5 Definitions (20 pts.) VI. 1 Question/1 Exercise (10 pts.) VII. 1 Essay (10 pts.)

NOTES:

- Tests will not specifically cover material discussed before the previous test.
- Concepts build from the beginning to the end of the semester and basic ideas are expected to be mastered to understand new ones.
- Definitions will come exclusively from underlined words in the notes, and from the "Summary of Terms" at the end of each chapter in the textbook encompassed by the test.
- Question/Exercises may be taken word for word and number for number from these chapters.
- Essay questions will come from the discussion topics in each section of the syllabus.

EVALUATION:

Your composite grade will be determined according to the following formula:

- 20% Lab Grade
- 20% Each of 3 highest test grades
- Lowest test grade 10%
- 10% Instructor's Evaluation

However, please note: Unless the student meets the following minimum requirements, he or she will receive a grade of F:

- The student must pass (achieve 60 or above) on at least one of the 1. 4 tests, regardless of the (possibly high) quality of the lab grades.
- 2. The student must complete and hand in at least 70% of the lab assignments regardless of the (possibly high) quality of the test grades.

OTHER POLICIES: Electronic Devices:

1. The use of portable devices, such as pagers and cell phones is not permitted when class or laboratory is in session. Please silence these devices before entering class. The use of cell phone calculators is not permitted.

FACULTY ABSENCE PROCEDURE: Please note well

A daily listing of cancelled classes will be listed at the BCC home page under Class Cancellations located at the bottom of the home page (<u>www.bergen.edu</u>). Students can consult this page before going to class. If students find a class cancelled which has not been listed, they should report this to the Evening/Saturday Office, Room C-107, or the Divisional Dean's Office, A-304.

STUDENT ABSENCES:

The student is expected to obtain notes and other assignments missed during office hours or by appointment. i.e., class time cannot be taken up by affairs resulting from an individual student's absence.

SERVICES FOR STUDENTS WITH DISABILITIES

Bergen Community College aims to create inclusive learning environments where all students have maximum opportunities for success. Any student who feels he or she may need an accommodation based on the impact of a disability should contact the Office of Specialized Services at 201-612-5269 or via email at ossinfo@bergen.edu for assistance.

BRIEF SYLLABUS

	TOPIC	PAGE
I.	Mechanics	19
II.	Properties of Matter	207
III.	Heat	283
IV.	Sound	355
v.	Electricity and Magnetism	405
VI.	Light	485
VII.	Atomic and Nuclear Physics	601
VIII.	Relativity	657

LABS:

A minimum of 12 laboratory exercises will be selected by the instructor from among the following:

Exper. # (keyed to Wilson)	Title
1	Experimental Error
1	Graphs
2	Mass, Volume, and Density
3	Uniformly Accelerated Motion
-	Velocity, Acceleration and Newton's Laws
4	Conservation of Linear Momentum
5	Torques, Equilibrium and Center of Gravity
9	Hooke's Law and Simple Harmonic Motion
7	The Specific Heats of Metals
8	Heats of Fusion and Vaporization
6	Archimedes' Principle: Buoyancy and
	Specific Gravity
10	Ohm's Law
11	Resistances In Series and Parallel
-	Coulomb's Law
12	Reflection and Refraction
	Exper. # (keyed to Wilson) 1 1 2 3 - 4 5 9 7 8 6 10 11 - 12

LAB MATERIALS

Students are expected to purchase a pad of Cartesian (regular) graph paper, and bring this to each lab session. A bright green or xeroxed grid is not acceptable. A calculator is helpful, especially one with trig functions, squares, and square roots in addition to the arithmetic functions.

Class Number/ Introduction to Physics Lecture Number	Discussion Topic Number	Topic	Textbook Reading Assignment
1		<pre>I. Introduction A. About Science 1. Introduction 2. Mathematics - The Language of Science 3. The Scientific Method 4. Science and Technology 5. Physics - The Basic Science B. Measurement; SI units II. Mechanics A. Motion 1. Introduction 2. Speed 4. Science and and and and and and and and and and</pre>	1-7 8 8-14 14-15 15-17 703-707 40 41-42 42
2		3. Velocity 4. Acceleration 5. Free Fall B. Newton's Laws 1. Newton's First Law 2. Newton's Second Law 3. Newton's Third Law	42-43 43-46 709-712 46-50 21-34 57-67 74-85
3	(1)	C. Momentum 1. Momentum 2. Impulse 3. Impulse Changes Momentum 4. Bouncing 5. Conservation of Momentum 6. Collisions D. Energy 1. Work 2. Power 3. Mechanical Energy 4. Conservation of Energy 5. Machines 6. Efficiency 7. Energy for Life 8. Population Growth in the U.S.	90-92 92-93 93-95 96 97-98 99-103 109-112 112 113-117 117-120 120-121 121-122 123-125 719-722
4	(2)	9. Electric Energy Growth in the U.S. E. Rotational motion 1. Circular Motion 2. Rotational Inertia 3. Torque 4. Center of Mass and center of gravity	132-136 136-139 139-140 140-145

Class Number/ Introduction to Physics Lecture Number	Discussion Topic Number	Topic	<u>Textbook</u> Reading Assignment
		5. Centripetal Force 6. Centrifugal Force 7. Angular Momentum 8. Conservation of Angular Momentum F. Gravitation	145-146 147-150 150-151 151-152
		1. Newton's Law of Gravitation 2. Weight and Weightlessness 3. Tides 4. Gravitational Fields 5. Einstein's Theory of Gravitation	160-167 166-167 167-170 170-173 173
5	(3)	<pre>6. Black Holes 7. Universal gravitation G. Projectile and Satellite Motion 1. Projectile Motion 2. Satellite motion 3. Kepler's Laws 4. Energy conservation and satellite motion 5. Escape Velocity</pre>	174-175 175-176 182-190 190-195 196-197 197-198 198-200

TEST	1
------	---

6	III Properties of Matter	
0	The properties of Matter	207 222
	A. Atoms, Molecules, and States of Matter	207-222
	B. Solids	226-227
	1. Crystal structure	227-229
	2. Bonding	-
	3. Alloys	-
	4. Volume	706
	5. Density	229-230
	6 Elasticity	230-231
	C Liquids	244-245
	1. Area	706
	2. Pressure	245-246
	3 Pressure in a liquid	246-249
		219-250
	- Ducyancy	240 250
	C. Whether Ar Oright Cirk on Elect?	250-251
	6. What Makes An Object Sink of Float?	251-252
	/. Flotation	253-256
	8. Pascal's Principle	255-256
	9. Surface tension	257-258
	10. Capillarity	258
7	D. Gases and Plasmas	264-265
	1. Air and air pressure	265-269
	2. Boyle's, Charles' and the Ideal Gas Laws	270-271
	3 Buovancy of Air	271-272
	A Bernoulli's principle	272-275
	5 Disember 5 principle	276-277
	J. Flasmas	210-211
	IV. Heat	

Class Number/ Introduction to Physics Lecture Number	Discussion Topic Number	Topic	Textbook Reading Assignment
		<pre>A. Temperature, Heat and Expansion</pre>	284-287 337-339 287-291 291-295 302-303 303-304 304-307 307-311
8	(4)	 4. Newton's Law of Cooling 5. Greenhouse Effect and the CO₂ problem C. Change of State Evaporation and Condensation Boiling Melting and Freezing Energy and Changes of State D. Thermodynamics 1 1st Law of Thermodynamics Adiabatic Processes Temperature Inversions 2nd Law of Thermodynamics Entropy 	311-312 312-313 320-325 325-327 327-328 328-332 336-340 341 344-348 349-350

Test 2	2
--------	---

9	V. Sound	
	A. Vibrations and Waves	355-357
	1. Pendulums	357-358
	2 Wave description	358-360
	3 Waye motion	360-361
		261
	4. Italisverse waves	301
	5. Longitudinal waves	361-362
	6. Interference	362-363
		363-364
	7. Standing waves	364-365
	8. Doppler effect	365-366
	B. Sound	
	1. Origin	374-376
	2. Nature of sound in air	376-377
	3. Media that transmit sound	377-378
	4. Speed of sound	378-379
	5. Reflection of sound	379-380
	6. Befraction of sound	380-382
	7 Energy in sound waves	379
	8 Forced vibrations	382
		202
	9. Natural irequency	382

Class Number/	Discussion		Textbook
Introduction	Topic	Topic	Reading
to Physics	Number		Assignment
Lecture Number			
		10. Resonance	382-385
		11. Beats	385-387
		12. Radio Broadcasts	386
		13. Sound intensity and units	_
		VI. Electricity and Magnetism	105 100
		A. Electricity at rest	405-408
		1. Electrical forces	408
		2. Electric charges	408-409
		3. Conservation of charge	409-410
		4. Coulomb's law	411-412
		6 Charging	412-415
			415-415
		8 Floatization	410-417
		9 Electric shielding	417-419
1.0			410 420
10		10. Electric potential	421-422
		B Floatric Current, Obrig Law	425-424
		1 Flow of charge	430-431
		2 Voltage sources	132-133
		3 Resistance	433-434
		4 Obmis Law	434-436
		5 Direct and Alternating Current	437-438
		6 Speed and source of electrons in a circuit	438-440
		7 Electric power	440 - 441
		8. Series and parallel circuits	441-445
		C. Magnetism	452-453
		1. Magnetic forces	453-454
		2. Magnetic poles	454-455
		3. Magnetic fields	455-456
		4. Magnetic domains	456-457
		5. Electromagnets	458-460
		6. Magnetic forces on moving charged particles	460
		7. Oersted's experiment	460-462
		8. Earth's magnetic field and Van Allen belts	462-464
		9. Magnetism, Evolution and Life	465
11		D. Electromagnetic Induction	
		1. Faraday's experiment	470-472
		2. Generators and alternating current	473-474
		3. Power production	474-475
		4. Transformers	475-478
		5. Self-induction	478
		6. Power transmission	479
	(6)	/. The SO ₂ problem	-
	(7)	8. The Fossil Fuel problem	
		9. Fleid induction	4/9-480
		VII. LIGHL D. Electromegnetic Dediction	
		A. Electromagnetic Radiation	196 199
	ļ	1. Electromagnetic wave velocity	486-489

Class Number/ Introduction to Physics Lecture Number	Discussion Topic Number	Topic	<u>Textbook</u> <u>Reading</u> Assignment
		<pre>2. Electromagnetic Spectrum 3. Transparent materials 4. Opaque materials 5. Shadows B. Color C. Why the sky is blue D. Why sunsets are red E. Why clouds are white F. Why water is greenish-blue G. Reflection 1. Principle of least time 2. Law of reflection 3. Plane mirrors 4. Diffuse reflection H. Refraction I. Cause of refraction J. Dispersion in a prism</pre>	$\begin{array}{r} 489-490\\ 491-493\\ 493\\ 494-495\\ 504-511\\ 511-512\\ 512-514\\ 514\\ 514-515\\ 520\\ 520-521\\ 521-522\\ 522-523\\ 522-523\\ 523-524\\ 524-527\\ 527-528\\ 529-531\end{array}$
12		 K. Total internal reflection L. Lenses M. Huygen's principle N. Diffraction O. Interference P. Interference colors by reflection from thin films Q. Light Emission R. Blackbodies S. Stefan-Boltzmann's Law T. Wien's Law U. Planck's Law V. Emission, continuous, and absorption spectra W. Incandescence X. Fluorescence Y. Phosphorescence Z. Lamps and Lasers 	531-533 533-537 544-547 547-548 549-551 522-554 562-564 - - 564-567 569-570 567-568 570-571 571-572 572-577

Test 3

13	VIII. Atomic and Nuclear Physics	
	A. Introduction	582-583
	B. Birth of the Quantum theory	583-585
	C. Photoelectric effect	585-587
	D. Wave-particle duality	588
	E. Double-slit experiment	588-590
	F. Particles as waves; electron diffraction	590-592
	G. Uncertainty principle	592-595
	H. Complimentarily	595-596
	I. Discovery of the Atomic Nucleus and Electron	601-606
	J. Spectra and the Bohr model	606-608

Class Number/	Discussion		Textbook
Introduction	Topic	Topic	Reading
to Physics	Number		Assignment
Lecture Number			
		K. Electron waves	608-609
		L. Quantum mechanics	610-611
		M. Correspondence principle	611-612
		N. X-, Alpha-, Beta-, and Gamma- Rays	615-618
		O. Environmental Radiation	619-622
		P. The Atomic Nucleus And The Strong Force	622-624
14		Q. Half-life	625
		R. Radiation detectors	626-628
		S. Natural transmutation of elements	628-630
		T. Artificial transmutation of elements	630
		II Badioactive isotopes and dating	630-631
		V Carbon and uranium dating	632-633
	(8)	W. Effect of radiation on humans	-
	(0)	X Nuclear fission	
		1 Fission	637-641
		2 Nuclear Fission Reactors	641-645
		3 Mass-energy equivalence	645-649
		Y Nuclear Fusion	010 019
		1 Fusion	640-652
		2 Controlling fusion	652
		TY Fnergy Sources for the Future	052
	(9)	A Are purchase reactors safe?	_
	(10)	B. The solar energy alternative	123-125
15	(/	Y Polativity	
10		A Special theory of relativity	657-659
		1 Pelative motion	659-660
		2 Michelson-Morley experiment	660-661
		2. Michelson-Motey experiment	661-662
		A Simultanoity	662-663
		5 Spacetime	663-664
		6 Time dilation	661-668
			669-672
		Addition of Valenting	673
			674-675
		10 I operthe contraction	
		11 Deletivistic Momentum	677-679
			679-690
		12. Mass-energy equivalence	690-691
		P Conoral theory of Polativity	686-687
		1 Principle of equivalence	687-689
		2 Ponding of light by gravity	689-691
		2. Denuing of ingenerational red chift	601-602
		J. Gravity and Chace. Orbit of Morgury	601
		5. Crawity and space, orbit of Mercury	694-696
		J. GLAVILY, SPACE, AND A NEW GEOMETRY	696
		7 Crawity, Space, time, and gravitational waves	020
		/. Gravity, Newton, and Einstein	09/

Test 4

5. Laboratory Rules:

- 1. Safety first If you are unsure a piece of equipment is working safely, call the instructor or lab technician over **BEFORE PROCEEDING ANY FURTHER**. Reckless behavior endangers <u>everyone</u>. Having fun in lab is encouraged (as long as the work gets done), but there is a clear boundary between fun and recklessness.
- 2. Lab manuals are to be brought to every lab session except week 5. Lab reports are due the week following the lab. There are fairly stiff penalties for lateness: -5 the first week; -10 for each day after that since corrected labs will usually be handed back 1 week after they are due. XEROXES OF LAB MANUAL PAGES ARE UNACCEPTABLE.
- 3. Absence from labs so that data acquisition must be obtained from a neighbor, without performing the experiment yourself, means that you can get at most a 50 for that lab. You must note you are doing this at the top of the lab report. If this is not noted and an attendance check by the instructor indicates absence, you receive a 0 for the lab and 1 point off personal evaluation for the term for each such offense.
- 4. Late labs are not acceptable until the next time the instructor has your class lab folder available.
- 5. THIS IS IMPORTANT: Although many experiments involve the acquisition of data in groups, calculations involving the experimental data are to be done INDIVIDUALLY. The college policy on plagiarism will be strictly enforced.
- 6. Lab reports are expected to be neat and organized a grader is in a much better mood (is more lenient?) when he has an easy time going through the work.
- 7. A reminder Failure to complete and had in at least 70% of the lab assignments is also grounds for an automatic F grade.
- 8. Schedule (Pages refer to Wilson's Lab Manual)

Week #	Lab # (in manual) Page	Title
1	1 3	Experimental Error and Data Analysis
2	1-handout 9-14	Graphs
3	2 23	Mass, Volume and Density
4	3-handout 37	Uniformly Accelerated Motion - Free Fall
5	Handout	Velocity, Acceleration and Newton's Laws
6	4-handout 61	Conservation of Linear Momentum
7	5 83	Torques
8	6-handout 95	Archimedes' Principle: Buoyancy and Specific Gravity
9	7,8-handout 107,119	Calorimetry
10	9-handout 141	Hooke's Law and Simple Harmonic Motion
11	10,11-handout 159,181	Electricity
12	12 201	Reflection and Refraction

6. Summary of Helpful Hints in Intro to Physics Lab

- I. Rules for significant digits
 - 1. The left-most non-zero digit is the most significant
 - 2. If there is no decimal point, the right-most non-zero digit in a number is the least significant. e.g. in 4620 and 46200 the two is the least significant.
 - 3. If there is a decimal point, the right-most digit is the least significant, even if it is 0, e.g. in 4620., 46200., and 462.00, the right-most zero is the least significant.
 - 4. All digits between and including the least and most significant digits are considered to be significant. e.g. 4620 and 46200 have 3 significant digits, 4620. has 4; 46200. and 462.00 have 5.
- II. Special rules for significant digit operations in Intro to Physics:
 - 1. All constants in a formula have as many significant digits as the lest significant multiplicative or dividing entry.
 - 2. Subtractions (e.g. in the numerator of a percent error or percent difference computation) which reduce the number of significant digits because of the close approximation of the subtracting numbers to each other should be stated to the number of digits of the least significant entry. e.g. 1.00-0.99=0.010.
 - 3. All averages should be expressed to the number of significant digits of the least accurate entry with one exception: Two numbers averaged can (temporarily) be expressed to one more significant digit than the least significant entry so the average makes sense. e.g. the average of 969 and 970, is taken as 969.5.

III. Graphs

- 1. All graphs should have titles, labelled axes with units, and numerically scaled axes. Name of preparer is necessary only if it is not on other materials to be handed in with the graph.
- 2. Straight-line fits to data should be passed through the data points so that the best fit to the data is obtained. It is possible that none of the data points will fall on the line. For any remaining analysis of the graph, now use the line, not the points it was obtained from !!!!
- 3. Try to use dashed lines, where appropriate, to show interpolations, extrapolations, where a slope of a straight line was taken, etc., on any graph you analyze.
- IV. Reading a vernier (consult figs. 2-4 and 2-5 p. 25 Wilson)
 - 1. In units of cm, use the main scale's position over the zero on the vernier scale to get x.y cm.
 - 2. See which mark on the vernier scale lines up best with the mark above it on the main scale to get the hundredth's place, z, of the measurement for x.yz cm. Remember that the first tick mark on the vernier scale is 0!
 - 3. Subtract a positive 0 error; add a negative 0 error.
- V. Reading a micrometer (consult fig 2-6 and caption p. 26 Wilson)
 - 1. In units of mm, read to the nearest 0.5 mm, where the edge of the thimble has intersected the main "sleeve". If a bottom tick mark has been passed by the thimble edge the reading is a 0.5 mm; if not, just a 0.0 mm.
 - 2. Read the value of the thimble where the 0 line of the sleeve intersects the thimble, estimating to the nearest 10th of the distance between the thimble tick marks. This translates so that, e.g. 224, with the 4 estimated means 0.224 mm. Add to the result of 1 above to get a "raw" answer in mm.
 - 3. Subtract a positive 0 error; add a negative 0 error to get a.bcd mm.
 - 4. Convert to cm by moving the decimal 1 digit to the left to get .abcd cm.

PHY185SCO.fa11 5/18

All BCC students enrolled in credit courses are entitled to a WebAdvisor account. With WebAdvisor, you may register online, pay your bill, check your schedule, room assignments, GPA, and find out what courses you need to take. To find out more about WebAdvisor, or to sign up online, visit <<u>http://go.bergen.edu>!</u> While there, please make sure you give us your preferred email address. You'll find directions how to do this at <<u>http://go.bergen.edu/email></u>.